IODP-MI Operations Committee

September 30- October 1, 2004

Lincoln Suites Hotel –1823 L Street, NW

Washington, D.C.

OPCOM ATTENDEES

OPCOM members

Jack Baldauf Mike Coffin Dan Evans Thomas Janecek Yoshihisa Kawamura Shin'ichi Kuramoto Chris MacLeod Terry Quinn Frank Rack Mary Reagan Ursula Roehl JOI Alliance, Texas A&M University, USA Ocean Research Institute, University of Tokyo, Japan ECORD Science Operator (ESO), British Geol Survey, United Kingdom IODP Management International, Inc., Washington, D.C., USA Center for Deep Earth Exploration (CDEX), JAMSTEC, Japan Center for Deep Earth Exploration (CDEX), JAMSTEC, Japan Department of Earth Seiences, Cardiff University, UK College of Marine Science, University of South Florida, USA JOI Alliance, Joint Oceanographic Institutions, Inc., USA JOI Alliance, Lamont Doherty Earth Observatory, USA ECORD Science Operator (ESO), Bremen University, Germany

Observers

Jamie Allan Andy Baker Rodey Batiza Kenji Kimura Kelly Kryc Yoichiro Otsuka Manik Talwani National Science Foundation (NSF), USA United States Science Support Program (USSSP), Washington, D.C., USA National Science Foundation (NSF), USA Ministry of Education, Culture, Sports, Science and Technology (MEXT) JOI Alliance, Joint Oceanographic Institutions, Inc., USA IODP Management International, Inc. (IMI), Washington, D.C., IODP Management International, Inc. (IMI), Washington, D.C., USA

MEETING AGENDA

Thursday, September 30th, 2004

- 1) Review OPCOM meeting agenda / logistics
- 2) FY05/06 Program Plan Budget Guidance from Lead Agencies/IODP-MI representatives
- 3) General Operator issues for OPCOM to consider
 - a. JOI Alliance representative
 - b. ESO representative
 - c. CDEX representative
- 4) Scheduling FY05/06 JR/MSP Operations

Friday, October 1st, 2004

- 5) Continued Discussion of JR/MSP Operations
- 6) Update and Implementation Expedition Assessment Scoping Group Status IODP Core Distribution HSE Document Other?
- 7) All Other Business OPCOM – next meeting date and location

08:30-15:00

08:30-17:00

MEETING REPORT

1) Review OPCOM meeting agenda / logistics

The meeting was opened with welcoming remarks by the Chair, followed by self-introductions by each participant and a review of meeting logistics by the Chair. A request for additional agenda items was made by the Chair, and no new items were suggested.

2) FY05/06 Program Plan Budget Guidance from Lead Agencies/IODP-MI representatives

Jamie Allan (NSF) provided new budget guidance for OPCOM to consider while planning new operations in FY05.

- (1) The Lead Agencies have determined, based upon estimated FY05 IODP Program Plan costs and available funds, that \$10M in POC and \$2M in SOC will be available for an additional 4 months of *JOIDES Resolution* operations.
- (2) NSF has informally determined that there are sufficient POC and SOC funds to operate the JOIDES Resolution until February, 2006, with last port call in US.
- (3) NSF requests that a provisional schedule for JOIDES Resolution operations be produced for the balance of FY06.

See Item #4 for committee discussion of this advice with respect to generating scheduling options for the JOIDES Resolution.

3) General Operator issues for OPCOM to consider

a. JOI Alliance

Jack Baldauf provided the Committee with an update of USIO operations to date (301), planning for Expeditions 301T-306, "Lessons learned" to date, status of Phase 2 SODV operations and co-chief staffing. See **Appendix A** for detailed powerpoint presentation.

b. ESO

Dan Evans first provided brief updates of ESO operations and issues regarding the ACEX expedition

Discussion then focused on the need to establish staffing and attendance guidelines for the onshore portion of the MSP operations. Protocols need to be established for determining the length of stay of participants. The main purpose of the onshore party is to ensure that a

minimum set of measurements is collected on all cores and the onshore party should be considered as "part of the cruise". Thus committee members felt that scientists should be committed to fully participate for the entire length of the onshore party. However, some flexibility is need for strong mitigating circumstances (health, family issues, etc).

Evans next updated the committee members on the status of Tahiti Sea level operations. A ship tender will be issued in October. Co-chief scientists (Yasufumi Iryu [Japan] and Gilbert Camoin [France]) have been selected as co-chiefs and will meet in Leicester on Oct 14-15 to begin expedition planning. A logistics meeting with Tahiti authorities will be held in December. Evans explained that no action had yet been taken toward planning with respect to the Tahiti Imaging APL as they were awaiting word from the proponents on the status of funding for the APL. Current plans are for Offshore work during the June-August 2005 time period with and Onshore party in October 2005.

c. CDEX

Yoshi Kawamura provided a brief update to the committee. There will be no international IODP operations for the Chikyu in FY05 or FY06. The ship will enter international operations most likely towards the end of FY07. Kawamura-san further outlined the training schedule for Chikyu as well as Site Survey plans for the NanTroSEIZE operation

4) Scheduling FY05/06 JR Operations

Scheduling Options generated by OPCOM

The committee discussed the new budget guidance provided by the Lead Agencies and decided on a three-part strategy for scheduling. The Committee would develop a set of options for:

- (1) The remainder of FY05
- (2) The first 4 months of FY06 (Oct –Jan)
- (3) A "conceptual model" for the last 8 months of FY06 (Feb-Sept).

The OPCOM scheduling strategy for non-riser operations involved the following:

- Determining operations required for each proposal
- Developing time estimates for operations
- Determining environmental constraints
- Developing a matrix that combines science plan with operational and environmental constraints and risk, operational days at sea, and transits
- Adding fiscal reality to determine viable options to forward to SPC

See **Appendix B** for a more detailed JOI Alliance powerpoint presentation of the assessment of proposals and the development of initial scheduling options for OPCOM to consider. Below is a summary of this processe.

Defining Operations

The Operator developed a table that listed the operations for each proposal and, for some proposals, a modified (more limited) set of operations. Modifications are often made to proposals for several reasons including: (1) to fit operations into a single expedition; (2) to limit operations for safety reasons; (3) lack of technological capability; and (4) lack of lead time to procure equipment. **Table 1** (below) shows the major operations proposed for the proposals that OPCOM considered.

PR	OPOSAL	OPERATIONS
522	Superfast Spreading	Reenter 1256D and RCB Core to total depth (752 -1750 mbsf), Logs w/ WST, UBI
603A	NanTroSeize	APC/XCB/RCB (3 sites), Reentry (3), VSP
	NanTroSeize ®	APC/XCB (3 sites), Reentry (3), VSP, LWD
603B	nantroseize	APC/XCB (4 sites), Reentry (2), CORK IIs (2), VSP
	NanTroSeize ®	APC/XCB (4 sites), Reentry (4), XCB, LWD, CORK-II (1)
477	Okhotsk/Bering	APC/XCB (11 sites), Logs w/ MGT
1	Bering Sea ®	APC/XCB (6 sites), Logs w/ MGT
482	Wilkes	APC,XCB,RCB, WST (3 sites), Logs w/ MGT
553	Cascadia	APC/XCB (7sites), Reentry (7) ACORKS (3), VSP, Logs w/ WST-3, LWD (31days)
1000	Cascadia ®	APC/XCB (7sites), Reentry (4), Logs w/ WST-3, LWD (11days)
600	Canterbury	APC/XCB/RCB (5sites), Logs w/ MGT
621	Monterey	3 reentry holes CORK (1), ACORK (1), Seismometer, LWD
	GOM	APC/XCB (4 sites) into blue sands w/ weighted mud
	GOM ®	APC/XCB (4 sites) to above blue sand
	Juan de Fuca	ACORKS (2), Pump tests, Logs w/ WST-3, UBI
	IRM sites	4 APC (1 site)
595	Indus	APC/XCB/RCB (1 site - 1500 mbsf)
547	Biosphere	APC/XCB/RCB (4 sites), Reentry cones (4), ACORK (4)
	Biosphere ®	APC/XCB/RCB 150m basement (4 sites)
557	Storegga	APC/XCB (7 sites), CORK II (1), PCS, HYACE, IWS, Logs w/ WST-3, LWD (23 days)
	Storegga ®	APC/XCB (2 sites), Logs w/ WST-3, LWD (5 days)
584	TAGII	RCB_ADCB (5 sites) w/HRRS, HDIC, LWD
555	Cretan Margin	APC/XCB/RCB (3 sites), CORK (1)
573	Porcupine Basin	3x APC/XCB (13 sites), Logs w/ UBI
	Porcupine ®	3x APC/XCB (4 sites), Logs w/ UBI

Table 1: Details of the operations for each of the proposals residing at OPCOM. An "®" indicates the proposal is modified from its original form. The proposals are grouped according to SPC priority (Green and Blue=highest, Yellow=second priority, Red third priority).

Developing Time Estimates

Next, a preliminary estimate for the coring and logging operations shown was developed (see **Table 2; below**). To determine a preliminary estimate of time required for each expedition five days of port call activities and (an estimated) seven days of transit to and from port were added to the coring and logging time estimates. In addition, proposed operations were spread between the Atlantic, Pacific, Southern, and Indian Oceans. The transit times to from one area of operations to another are

substantial, potentially adding 20-30 days of transit (with no coring/science operations) between expeditions. Thus, OPCOM members felt that every effort should be made to minimize the transit between expeditions, even if this meant selecting some lower priority proposals for scheduling.

		Time	On Site	Core	Log	Transit	Between	To/from	Portcall
1		Total	Total			Total	sites		
522	Superfast Spreading	63.4	51.4	45.6	5.8	7	0	7	5
603A	NanTroSeize	107.6	94.6	75.8	18.8	8	1	7	5
-	NanTroSeize ®	90.7	76.1	60.3	15.8	9.6	2.6	7	5
603B	nantroseize	179.2	166.2	144.3	21.9	8	1	7	5
1	NanTroSeize ®	91.6	78.6	65.4	13.2	8	1	7	5
477	Okhotsk/Bering	84.8	59.2	53.8	5.4	20.6	13.6	7	5
2 - A3	Bering Sea ®	53.5	36.1	32.7	3.4	12.4	5.4	7	5
482	Wilkes	54.5	36.5	31.2	5.3	13	1	12	5
553	Cascadia	127.7	114.7	92.5	22.2	8	1	7	5
	Cascadia ®	118.5	105.5	83.3	22.2	8	1	7	5
600	Canterbury	69.6	57.1	46.1	11	7.5	0.5	7	5
621	Monterey	40.4	28.2	24.3	3.9	7.2	0.2	7	5
	GOM	53.9	38.1	32	6.1	10.8	3.8	7	5
	GOM ®	38.5	23.8	17.7	6.1	9.7	2.7	7	5
	Juan de Fuca	56.3	44.1	39.3	4.8	7.2	0.2	7	5
-	IRM sites	36.4	24.1	21.7	2.4	7.3	0.3	7	5
595	Indus	42.9	30.9	27.5	3.4	7	0	7	5
547	Biosphere	87	74.5	70	4.5	7.5	0.5	7	5
	Biosphere ®	56.1	43.6	39.2	4.4	7.5	0.5	7	5
557	Storegga	71.2	56.7	42.7	14	9.5	2.5	7	5
	Storegga ®	34.5	21.9	15.3	6.6	7.6	0.6	7	5
584	TAG II	92.8	80.3	61.7	18.6	7.5	0.5	7	5
555	Cretan Margin	50.1	37.9	34.8	3.1	7.2	0.2	7	5
573	Porcupine Basin	68.9	55.8	43	12.8	8.1	1.1	7	5
	Porcupine ®	30.8	18.6	14.4	4.2	7.2	0.2	7	5

Table 2: Details of the preliminary estimates of operation and transit times for each of the proposals residing at OPCOM. An "®" indicates that operations in the proposal are modified from its original form. The proposals are grouped according to SPC priority (Green and Blue=highest, Yellow=second priority, Red third priority).

Incorporating Environmental Constraints

Environmental constraints are an important consideration in scheduling. **Table 3** provides examples of the various environmental issues affecting the different proposals.

Environmental Constraint	Affected Proposals
Ice	Bering Sea, Wilkes, IRM, Storegga
Ice bergs	IRM
Winter storms	IRM, Storegga
Hurricanes/typhoons	GOM, TAG, NanTroSEIZE
Monsoons	Indus
Currents	NanTroSEIZE
Shallow water	Canterbury, Porcupine

Table 3: *Potential environmental factors taken into account by the Operator and OPCOM when scheduling expeditions.*

The time windows for the various environmental constraints were determined by the Operator and the weather windows prioritized for each proposal (**Table 4**). Some proposed operations (e.g., Superfast Spreading, Cretan Margin) could be conducted at any time during the calendar year. Others such as Wilkes Land, Canterbury, and Bering/Okhotsk Sea can only be conducted during a very restricted interval during the summer months in each hemisphere.

-		May	June	Jul	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept
522	Superfast Spreading																	
603A	NanTroSeize		1					-		1.1.1		1000						
	NanTroSeize ®		1															
603B	nantroseize															1		
	NanTroSeize ®											Sec. 1						
477	Okhotsk/Bering																	
	Bering Sea ®																	
482	Wilkes				1.00													
553	Cascadia		2.11															
	Cascadia ®		100												1			
600	Canterbury																	
621	Monterey																	
1	GOM							2.77										
-	GOM®																	
16	Juan de Fuca																	
	IRM sites													1.000				
595	Indus		100									1						
547	Biosphere		12.5		1.1			-				1						
	Biosphere ®																	
557	Storegga																	
	Storegga ®																	
584	TAG II							1										
555	Cretan Margin																	
573	Porcupine Basin									1			1				1000	
	Porcupine ®													1		1.00		

Table 4: Estimates of prime weather windows for proposed operations. For proposals listed in the left-hand column an "®" indicates that operations in the proposal are modified from its original form. The proposals are also grouped according to SPC priority (Green and Blue=highest, Yellow=second priority, Red third priority). On the right hand side of the table, green=optimal weather window, purple=potential but not prime weather window, red=operations not proposed for that time period.

Initial Scheduling Options

These weather windows are superimposed with the operational times to determine an initial set of schedules for FY05 (**Figure 1**). OPCOM examined this initial set of options in more detail. Some proposals required long lead times for planning or procurement and OPCOM felt they should not be scheduled in FY05 (e.g., NanTroSEIZE, Biosphere, Cascadia). Weather windows and/or transit times eliminated others from FY05 consideration (e.g., Wilkes, Canterbury, Indus, IRM, among others).

April May June July Aug Sept Ocl Nov Dec Jan Feb March April May June July Aug Sept

306	IRM	S.D.	Cascadia Biosphere M.B.	® e ® B.S.	Bal. Sup	erfast		Well.	Cante Wilke	rbury s	Ca Wil	nterbur Ikes	ry	U.5.	Danvati				
306	Porcupine TAG 11 Storeopa	GOM®) Cre	S.D.	Cascadia Biospher M.B.	1 ® 12 ® 8,5,	Cascadi Biosphe M.B.	a® re® B.S.	W	ell. (Canterbur Wilkes	Ŷ	Cant Wilke	erbury es	u	l.S. Dem	olb)			
(306	IRM	Porcupine TAG II Storegga	GCM® Cre	Porcupin TAG II Storegga	e GOM® Cre	Bal.	vell.	Canterbu Wilkes	ry	Cant Wilke	erbury es		U.S.	2400 page 1					
:306	Porcupine TAG II Storegga	GOM® Cre	S.D.	Cascadia Biospher M.B.	e ® B,S,	Cascadi Biosphe M.B.	a ® re ® B.S.	Bal.	Super	fast		Yok	NanTroSE	IZE	NanTroSEIZ	E	U.S.	Dender	
306	IRM	Bal. Supe	erfast	S.D	Cascadia Blosphere M.B.	® e ® B.S.	We	ll. Cant Wilk	terbury es		Canterb Wilkes	ury	Yok	NanTro	SEIZE	NanTros	SEIZE	U.S.	Denneb
306	IRM	Porcupine TAG II Storeoge	COMB Ore	Bal. Sup	perfast		YOK	NanTroSt	EIZE	NanT	roSEIZE		U.S.	Demoits					-
	IRM	5.D.	Cascadia Biosphere M.B.	® e ® B.S.	Cascadia Biosphere M.B.	® e ® B.S.	Bal.	Superfasi		Y	ok Na	nTroSE	IZE	NanTroSE	IZE	U.S.	A Sectoria		
(306)	IRM	Porcupine TAG II Storeopa	COM® Cre	S.D.	Cascadia Biosphere M.B.	® £ ® B.5.	Casca Biosp M.B.	adia ® here ® B.S.		Bal. Supe	erfast		Yok	NanTroSE	IZE Na	anTroSEI	IZE	U.S.	Demois
(306	Yokoha	ma Nan'	TroSEIZE	Ba	ilboa Sup	erfast		Well.	Cante Wilke:	rbury s	Ca Wil	nterbur Ikes	ry	S.D.	Cascadia Biosphere M.B.	B.S.	Dermite	F	3

Figure 1: Initial set of scheduling options presented at OPCOM.

From this initial set of options, OPCOM then generated three models (**Figure 2**) that it felt would be feasible given the budgetary and operational constraints:

- Model 1: Porcupine Carbonate Mounds, Gulf of Mexico and Superfast Spreading
- Model 2: Bering Sea (one expedition) and Monterey
- Model 3: Okhotsk/Bering Sea (two expeditions)

Figure 2: Scheduling options fo the remainder of FY05. OPCOM members narrowed these option. down to three models: one that minimized between expedition transits, a second that concentrated on both high-prior science and the development of engineering and observatory tes beds, and a third low-cost option (i.e., an expedition that does not require significant new hardwar or supplies).

Model 1 (Figure 2) was developed as an option that minimized transits and maximized the total amount of science (see Expedition Descriptions for more details on the operations proposed for these expeditions). Model 2 presented SPC with an option for highly ranked science (Bering Sea) and the option to establish an engineering test site (Monterey Bay Observatory). Model 3 was presented as the lowest cost option as the Bering/Okhotsk Sea operations do not require significant new hardware or supplies.

Each of the proposed models for the remainder of FY05 left SPC with numerous FY06 options (e.g., to go north or south in the Pacific Ocean, depending on the mission forecast and budget projections). **Figure 3** (below) shows conceptually the options that SPC could consider in developing a science plan for FY06. Regardless of the options chosen for FY05 and FY06, the majority of the highest-ranked proposals would be completed by the end of FY06 operations.

Figure 3: Scheduling options prepared by OPCOM for SPC to consider for FY06. Options for the first part of FY06 (Oct-Jan) would depend on which model was chosen for FY05 (Figure_2).

5) Other Business

A) Expedition Reviews

The Chair provided a brief update to the committee about the expedition review process established by IODP-MI. This review process is divided into two parts, an **operational** review and a **science** review.

The expedition-based science review falls into two phases: An initial review to be included in the Preliminary Report and a later second phase conducted by the Science Advisory Structure in conjunction with the IODP-MI VP Science Planning and Deliverables, Hans Christian Larsen. This second phase will be held well after the Expedition Report has been completed to more properly assess the long-term science impact from the expedition or a group of related expeditions. The Co-chief report to the SAS Science Planning Committee 9-12 month post expedition will be part of the second-phase science review.

The operational review is conducted by the IODP-MI Expedition Review Task Force and is generally conducted 1-3 months post-expedition. Each Review Task Force meeting consists of IODP-MI personnel (the president of IODP-MI and the Vice President of Operations), the expedition co-chiefs, representatives of the operators, three industry experts, and three non-expedition scientists

knowledgeable about the expedition objectives or goals. These reviews will focus on "lessons learned" and "How do we do things better in the future". Areas of discussion will include pre-cruise planning, syn-cruise drilling operations, communications between scientists and operators, roles and responsibilities of scientists and operators, general procedures and policies (e.g., curation, communications), laboratory operations, etc. The Task Force will develop specific recommendations for the Implementing Organization, for IODP-MI, and for the Science Advisory Structure and publish these recommendations on the IODP-MI website.

B) Project Scoping

The Chair provided a brief update on the establishment of a Project Scoping Group (PSG) for the NanTroSEIZE program. The first full meeting will be held in October at JAMSTEC. The chair provided a description of the membership of the Scoping group and the preliminary agenda for the meeting. Agenda topics will include;

- Mandate of NanTroSEIZE PSG
- Brief Overview of Science Proposals
- Site Survey Status and Future Plan
- Strategy for Riser-less Drilling
- Preparation for Riser Drilling
- Long-Term Observatory Development
- Operation and Management

C) Next Meeting

The next meeting has been tentative scheduled for February 2005. At this time OPCOM will have FY06 budget guidance from the Lead Agencies and can utilize that information to develop more formal FY06 scheduling options for SPC to consider at its March meeting.

APPENDIX A TO OPCOM Meeting Sep 31-Oct 01, 04

USIO UPDATE

Cruise.		Pert (Origin)	Dates ^{1,1}	Total Days (Port/Sea)	Days at Sea (Transit ³ /Ops ⁴)	Co-Chief Scientists	Alliance Contact(s)
Transit		Gamagori, Japan	1 - 20 June '04	19 (2/17)	17/0	N/A	N/A
fobilization		Astoria	20 - 27 June	7 (7/0)	(6/0)	N/A	N/A
luan de Fuca fydrogeology	1	Astoria	27 June - 21 August	55 (1/54)	2/52	Andrew Fisher Tetsuro Urabe	TANU: A. Klaus LDEO: G. Iturring
Costa Rica tydrogeology/Transit		Astoria	21 August - 22 September	32 (1/31)	28/3	TERN	TANU: H. Halone
Forth Atlantic Climate 1	2	St. John's Newfoundland	22 September – 14 November	53 (5/48)	5/43	James Channell Tokiyuki Sato	TAMU: M. Malone LDEO: S. Robinse
Oceanic Core Complex 1	3	Ponta Deigada	14 November - 5 January '05	52 (5/47)	7/40	Chris MacLeod Barbara John	TANU: J. Miller LDEO: F. Einaudi
Oceanic Core Complex 2	4	Ponta Delgada	5 January - 27 February	53 (5/48)	7/41	Donna Blackman Yasuhiko Ohara	TAMU: J. Miller LDEO: H. Delius
North Atlantic Climate 2	5	Ponta Delgada	27 February – 22 April	54 (5/49)	4/45	Rudiger Stein Toshiya Kanamatsu	TAMU; M. Malone LDEO: B. Rea
fransit		Reykjavík	22 April - 10 May	18 (3/15)	15/0	N/A	N/A
Demobilization		Galveston	10 May - 1 June	22 (22/0)	0/0	N/A	N/A
lotes: hotegitance of the vess Expedition nonenciatur Ship is scheduled to arri Jonnal cruise dare reflect Transit = Estimated time 'Ops = Operations (inclu	el will ve bi s firs t to/t des b	III take place 31 May 200 be adjusted in the future to 00 he on first day of port of 4 day of port (all, ship saids from port to the operating a oth on-site and between si	4. reflect naming protocols to be - all, when ready, rea, the time).	established by	100P-MI.	AB 7 May 21	004

APPENDIX B TO OPCOM Meeting Sep 31-Oct 01, 04

USIO Project Assessments

- · N	Proposals	"modified"
	NanTroSEIZE A	Replaced NT1-03A w/NT2-04A
	NanTroSEIZE B	Reduced t.d. from 3500 to 2000 mbsf
	Juan de Fuca	3 CORK IIs (2 CORKS)
	Storegga	2 sites (7 sites)
	Indus	Murray Ridge to 2 km (3.7 km)
	Porcupine 4 si	tes w/o CORK (13 sites

	Proposals	"options"
Be	ering Sea®	Bering Sea only
Са	Iscadia®	7 sites w/3 reentry (7), no CORKS
G	DM®	Normal pressure sites (no CORKs)
IR	M®	1 site
Bio	osphere®	5 sites w/o reentry (5) or ACORKS (5)
Ex	pedition 306®	(CORK/IRM/Storegga)

Microbiology Assumptions Special microbiological sampling lines (special coating and titanium) are not included in cost estimate Self-contained microbiological sampling devices can be run inside CORK casing as required under the CORK system, but not connected into the CORK system Laboratory activity similar to that for Leg 201 Rad van will not be used

≥	Operational	Constraints
	•Environment Ice, ice bergs, winter typhoons, monsoons	r storms, hurricanes, , current, shallow water
	Operations	Wave Height (ft.)
	 CORK completions 	9-12
	•RCB core	12-15
	●LWD log	12-15
	•XCB core	15-18
	•APC core	18-21

≥	Equipment Proc	curement
	External review	1-2 months
	Finalize operations	1-2
	Vendor options	0.5-1
	Specifications	1.5-2.5
	Bid	0.5-1.0
	Procure/fabricate	3 – 6
	QC/QA	0.5-1.0
	Ship to vessel	1-2
	Contingency	1
	Total (min.)	10 – 15 months

D	Lead Time	
	•Casing	6 months
	•CORK, CORK II, ACORKS	9-12
	•Hammer System	9-12
	•LWD	6
	•Planning	15-24
	Consequences: •Requires min. 15 month (prefer time •FY06 items require procurement	24 months) lead during FY05

POC Definition•Safely make and complete a hole•Installation of seafloor hardware•Safe delivery of the core to the core lab•Management and administrative effort in support of above

Assessment Results

- •Operational Risks
- •Environmental Constraints
- •Estimated Expedition Costs
- •Potential Expedition Strategies

2	Superlast Spreaming	Reenter 12600 and HCB Core to total deport (752-1750 mbst) Lodow/ WST CO
3	NanTroSeize	APC/XCB/RCB (3 steel Render (3) V3P
	NanTroSeize ®	APC/XCB (3 sites), Reentry (3), VSP, LWD
8	naritzoskizu	APCOLOB (4 sees), Reentry (2), COPK (Is (2), VSP
1	NanTroSeize ®	APC/XCB (4 sites), Reentry (4), XCB, LWD, CORK-II (1)
7	Okhotsk/Bering	APCO/CB/III sless Logs w'MGT
1	Bering Sea ®	APC/XCB (6 sites), Logs W/ MGT
2	Wilkes	APC XOE RIGB, WGT (3 sites) Loga wy MET
2	Cascadia	APC/XCR (7stee), Reentry (7) ACORKS (2) VEP Logs # WET-3 LWD (3) Haps
	Cascadia ®	APC/XCB (7sites), Reentry (4), Logs w/ WST-3, LWD (11days)
	Ganterbury	APC/XCB/RCB (Sater) Loga w/ MGT
	Monterey	3 Auentry holes CORH (1) NCORN (1) Such manufact LWC
	GOM	APCOXCB (4 steep mit blue sands w/ weighted mud
	GOM ®	APC/XCB (4 sites) to above blue sand
	Juan de Fuca	ACORRS (2) Fump limits Longen, WET & UBI
	IRM siles	4 APC (1 allo)
5	Indus	APC/XCB/RCB (1 site < 1500 mbsf)
7	Biosphere	APC/XCB/RCB (4 sites). Reentry cones (4): ACORK (4)
	Biosphere ®	APC/XCB/RCB 150m basement (4 sites)
7	Storegga	APC/XCB (7 sites). CORK II (1). PCS. HYACE. IWS. Logs w/ WST-3. LWD (23 days)
-	Storegga ®	APC/XCB (2 sites), Logs w/ WST-3, LWD (5 days)
4	IAG #	AG8: ACC6 (Sinter) WHRRS. HINL, LWD
	Crean Margin	APC/(CE/RCE (Simon) CORX (1)
	Forcupore Basin	La APOYCA (13 altes) Liga el UBI
	Porcupine ®	3x APC/XCB (4 sites), Logs w/ UBI

Coring Tools

PCS Retrieves core sample w/near in situ pressures up to 10,000 psi

A

DVTPP Heat-flow and pressure measurements

Hard Rock Reentry System to install a 13-3/8 in. casing with reentry capability

HYACE HYACE Rotary Corer (HRC) and Fugro Pressure Corer (FPC)

IWS Water Sampler deployed through the drill string

APCM

Temperature, pressure, and conductivity conditions while cutting and retrieving an APC core

Operational Risks

- Hole stability
- Overpressure
- •Environmental constraints
- Clearances
- Microbiology
- •Procurement/long lead items

Engineering Design Plan

- •Glean industrial experience and techniques
- •Review seismic to confirm depths
- •Determine mud weights to control flow
- Prepare an operations plan
- Prepare contingency procedures
- •Complete platform risk assessment
- •Review operations plan and contingency procedures with lease owner and MMS

COM Content of the series of the series

	Operations	Wave Height				
	 Observatories RCB LWD XCB APC 	9-12 ft. 12-15 ft. 12-15 ft. 15-18 ft. 18-21 ft.				

	0-3	3.8	6-9	9-12	12-15	15-18	18-21	21-24	24-27	27-30	>30	% D
-1	19.28	39.18	24.39	5.85	3.40	2.30	0.96	0.41	0.17	0.07	0.00	1.5
E.	19.91	41.53	22.82	\$,59	2.91	1.77	0.95	0.38	0.12	0.01	0.00	1.5
-	19,41	40.28	23.04	\$.37	3,99	1,95	0,91	0,39	0.15	0.02	6,00	15
A	18.31	35.62	26.14	10.56	4,34	2,65	1,46	0.91	0.21	0.05	0.02	2.4
М	14.50	34,24	26,15	12.14	5,53	3,52	2,31	1.01	0.37	0.11	0.05	- 3.8
J	13.90	31.99	28.55	15.68	5.40	2.30	0.98	0.62	0.31	0.17	8.10	2.2
1	13.90	31.99	28.55	15,68	5,40	2.30	0,98	0.67	0.24	0.24	0.15	2.2
A	15.15	37.27	24.68	12.32	5.06	2.90	1,29	0.57	0.28	0.18	6.11	2.4
9	19.04	34.83	27.10	10.45	4.72	2.04	0.76	0.52	0.26	0.18	0.10	13
D	20.22	38.43	23.43	10,26	3.86	2.73	0,81	0.40	0.22	0,15	0.07	17
N	16.54	38.48	25,43	10,85	3.75	2.44	1.19	0.48	0.23	0,09	0.02	Z.0
D	14.17	41.48	25.30	9.69	2.72	1.37	0.56	0.15	0.99	0.00	0.00	6.2

≥	Shallow Water Guidelines				
	•0-75 m -Operations will not be conducted •76-300 m -Coring will be terminated if •Heave comp stroke exceeds 1.0 m •Wind > 35 kts or roll >3 degrees •Deteriorating weather, sea state •Floating ice present				
	•301-650 m -Coring will be terminated if •Heave comp stroke exceeds 2.0 m •Wind > 50 kts or roll >5 degrees •Deteriorating weather, sea state •Floating ice present				
	•651+				

Jurisdictio	nal Clearances
Wilkes	Antarctic Treaty
Juan de Fuca	Canada
Cretan	Crete
IRM	Greenland
Porcupine	Ireland
NanTROSEIZE	Japan
Canterbury	New Zealand
Storegga	Norway
Indus	India
Sea Of Okhotsh	Russia
Bering Sea, Biosphere	USA
Cascadia, GOM,	USA
Monterey	USA, Marine Sanctuary

Potential Transits					
	Stavanger – Balboa	16 days			
	Balboa – Wellington	26 days			
	Wellington – Yokohama	20 days			
	Yokohama – Balboa	34 days			
	Balboa – Victoria	16 days			
	Yokohama – Victoria	16 days			

 Procurement/Long-Lead						
 Finalize expeditions Finalize completions Complete ED and bids Complete fabrication/OC Shipping Available 	1 Nov 04 15 Jan 05 March 05 Dec 05 Jan 06 Feb 06					
Consequences: GOM, Biosphere, Monterey, Cascadia, Juan de Fuca limited to FY06						

Cost Escalations					
	•10 ³ 4" casing	72%			
	•4 1/2" casing	90%			
	 Trucking 	29%			
	•Air travel	8%			
	•Fuel	~10%			
	 Salaries 	3%			
	•Day rate	2%			
	 Services 	26%			

Mud Requirements

•Mud Volume for 4 normal pressure sites – 3352 bbls

•Minimum mud volume to kill hole if Blue Sand penetrated – 7064 bbls

•JR mud capacity is 8331 bbls

J.

65