International Ocean Discovery Program:

Progress Toward Science Plan Fulfillment

Illuminating Earth's Past, Present, and Future

Prepared for the 2017 IODP Forum Shanghai, China James A. Austin, Jr., Chair

(with substantial input from Drs. Given and Yamamoto of the IODP Science Support Office THE INTERNATIONAL OCEAN DISCOVERY PROGRAM EXPLORING THE EARTH UNDER THE SEA

SCIENCE PLAN FOR 2013-2023

<u>Completed</u>/Scheduled Expeditions (40) by Theme

Chikyu (*** = PCT approved)

Note: updated after March-June 2017 EFB/CIB/JRFB/SEP decisions.

Climate and Ocean Change

Science Plan Challenge	<u>Completed</u> / Scheduled Expeditions (#) = submitted proposal(s)	
I. Climate response to high atmospheric CO2	 <u>361 S. African Climate (SAFARI)</u> 369 Australia K Climate & Tectonics (760/897-APL) - 2017 <u>371 Tasman Frontier Subduction Init. & Paleogene Climate</u> 373 Antarctic Cenozoic Paleoclimate (813) – 2018 or later 377 Arctic Ocean Paleocean. (708) - 2018 378 South Pacific Paleogene Climate (567) - 2018 382 Iceberg Alley Paleocean. & S. Falkland Slope Drift (902/846-APL2) – 2019 	
2. Ice sheet and sea level response to warming climate	 359 Maldives Monsoon & Sea Level 373 Antarctic Cenozoic Paleoclimate (813) – 2018 or later 374 Ross Sea WAIS History (751) - 2018 377 Arctic Ocean Paleocean. (708) - 2018 379 Amundsen Sea WAIS History (839) - 2019 383 Dynamics of PacAnt. Circumpolar Current (912) - 2019 	

Climate and Ocean Change

Science Plan Challenge	<u>Completed</u> / Scheduled Expeditions
3. Control of regional precipitation patterns	353 Indian Monsoon Rainfall 354 Bengal Fan 355 Arabian Sea Monsoon - CPP 356 Indonesian Throughflow 359 Maldives Monsoon & Sea Level 361 S.African Climate (SAFARI) 363 Western Pacific Warm Pool
4. Ocean response to chemical perturbation	 364 Chicxulub Impact Crater 369 Australia K Climate & Tectonics (760/897-APL) - 2017 374 Ross Sea WAIS History (751) - 2018 378 South Pacific Paleogene Climate (567) - 2018

4

Biosphere Frontiers

Science Plan Challenge	<u>Completed</u> / Scheduled Expeditions
5. Origin, composition, and global significance of sub- seafloor biosphere	(347 Baltic Sea) 357 Atlantis Massif 366 Mariana Convergent Margin 374 Ross Sea WAIS History (751) - 2018 376 Brothers Arc Flux (818) - 2018 385 Guaymas Basin (833) - 2019
6. Limits of sub-seafloor life	370 Nankai Temp. Limit 374 Ross Sea WAIS History (751) - 2018 376 Brothers Arc Flux (818) - 2018
7. Ecosystem sensitivity to environmental change	<u>364 Chicxulub Impact Crater</u>

Earth Connections

Science Plan Challenge	<u>Completed</u> / Scheduled Expeditions
8. Upper mantle composition/structure/ dynamics	<u>(345 Hess Deep)</u> <u>356 Indonesian Throughflow</u> <u>357 Atlantis Massif</u> <u>360 SW Indian Ridge Lower Crust/Moho</u>
9. Seafloor spreading and ocean crustal architecture	(345 Hess Deep) 349 South China Sea Tectonics 367/368 South China Sea Rifted Margin 369 Australia K Climate & Tectonics (760/897-APL) – 2017 381 Corinth Active Rift Dev. (879) – late 2017 384 Panama Basin Crustal Arch. (504B) & Eng. (769-APL2) - 2019
10. Chemical exchange between oceanic crust and seawater	<u>357 Atlantis Massif</u> 376 Brothers Arc Flux (818) - 2018
II. Subduction, volatile cycling, and formation of continental crust	350 Izu Bonin Mariana: Rear Arc 351 Izu Bonin Mariana: Arc Origins 352 Izu Bonin Mariana: Forearc 371 Tasman Frontier Subduction Init. & Paleogene Climate

Earth in Motion

Science Plan Challenge	<u>Completed</u> / Scheduled Expeditions
I 2. Control of earthquakes, landslides, tsunami	 358 NanTroSEIZE Riser Hole at C0002 – 2018-2019 362 Sumatra Seismogenic Zone 365 NanTroSEIZE Megasplay LTBMS 372 Creeping Gas Hydrate Slides & Hikurangi LWD (841-APL) - 2017/18 375 Hikurangi Observatory (781A) – 2018 360 NanTroSEIZE Frontal Thrust LTBMS – Iate 2017 381 Corinth Active Rift Dev. (879) – Iate 2017
I 3. Storage/flow of sub-seafloor carbon	 372 Creeping Gas Hydrate Slides & Hikurangi LWD (841-APL) - 2017/18 386 GoM hydrates (887-CPP2) - 2019
14. Fluids linking sub-seafloor tectonic, thermal and biogeochemical processes	 <u>357 Atlantis Massif</u> <u>366 Mariana Convergent Margin</u> 376 Brothers Arc Flux (818) - 2018

Full Proposals by Theme/Challenge

- Updated after March-June 2017 CIB/FB/SEP decisions
- Does not include pre-proposals (except as noted)

Key: * = Holding Bin, after external review ** = undergoing external review (following June 2016 SEP) () = done during Integrated Ocean Drilling Program { } = security issues

Top U.S. priority challenge for JR, as of 2012 (JRAW update?) JOIDES Resolution Mission-Specific Platform Chikyu (*** = PCT approved)

用有效的問題的思想的思想的意思。

Climate and Ocean Change

Challenge	At CIB/FBs	At SEP
I. Climate response to high atmospheric CO ₂	 771 Iberian Margin Paleoclimate {778 Tanzania Margin Paleoclimate Transect} 834 Agulhas-Transkei Transect 813 Central Antarctic Paleocean. (exp. 373) 71-CPP Lord Howe Rise*** 897-APL Southern Ocean K Anoxia 	747 N. Atl. Paleogene Climate 831-APL Campbell Drift Climate* 848 Weddell Sea History 864 Eq. Atl. Gateway 874 Neogene Newf. Sed. Drifts 888 Aleutian Basin Formation 909 NW Greenland 914 Brazilian Eq. Margin Paleo.
2. Ice sheet and sea level response to warming climate	716 Hawaiian Drowned Reefs 730 Sabine Bank Sea Level 732 Antarctic Pen. Sed. Drifts 771 Iberian Margin Paleoclimate 777-APL3 Okinawa 813 Central Antarctic Paleocean. (exp. 373)	848 Weddell Sea History 863 MDP Integrated S. Ocean Lat. Transects 909 NW Greenland

Climate and Ocean Change

Challenge	At CIB/FBs	At SEP
3. Control of regional precipitation patterns	{549 Arabian Sea Monsoon} {595 Indus Fan/Murray Ridge} 618 East Asian Margin	819-APL2 Arabian Sea OMZ* 859 Amazon Margin Drilling
4. Ocean response to chemical perturbation		819-APL 2Arabian Sea OMZ* 888 Aleutian Basin Formation

Biosphere Frontiers

Challenge	At CIB/FBs	At SEP
5. Origin, composition, and global significance of sub- seafloor biosphere	633 Costa Rica Mud Mounds 830-APL Scott Plateau	853 South Atlantic Transect*
6. Limits of sub-seafloor life		
7. Ecosystem sensitivity to environmental change	{724 Gulf of Aden}	819-APL2 Arabian Sea OMZ* 853 South Atlantic Transect* 859 Amazon Margin

Earth Connections

Challenge	At CIB/FBs	At SEP
8. Upper mantle composition/ structure/ dynamics	522 Superfast Spreading Crust	805 Mohole to the Mantle 834 Agulhas-Transkei Transect 890 Walvis Ridge Hotspot 892 Reykjanes Mantle Convection
9. Seafloor spreading and ocean crustal architecture	522 Superfast Spreading Crust 769-APL2 Costa Rica Crustal Architecture (504B logs)	805 Mohole to the Mantle 853 South Atlantic Transect* 890 Walvis Ridge Hotspot
10. Chemical exchange between oceanic crust and seawater		853 South Atlantic Transect* 892 Reykjanes Mantle Convection
II. Subduction, volatile cycling, and formation of continental crust	698 IBM Middle Crust*** 781 B Hikurangi Riser 908-APL Costa Rica Megathrust Fluid Pressure	888 Aleutian Basin Formation

Earth in Motion

Challenge	At CIB/FBs	At SEP
I2. Control of earthquakes, landslides, tsunami	NanTroSEIZE 3,4*** (603C,D) 537B CRISP B*** 791B Hikurangi Riser 835 JTRACK	770 Kanto Asperity* 796 NADIR: Nice ADP 811 Cape Fear Slope Stability 866 Japan Trench Paleoseis.
13. Storage/flow of sub-seafloor carbon	791-APL2 Cont. Margin Methane Cycling	811 Cape Fear Slope Stability 836-APL Cont. Margin Methane Cycling*
 I4. Fluids linking subseafloor tectonic, thermal and biogeochemical processes 	633 Costa Rica Mud Mounds 637 New England Hydrogeology	

Active proposals: 89, by Science Plan themes

How many proposals address which challenges?

Active proposals: 89, by target ocean

Active proposal status: 89, by review stage

by lead proponent's member affiliation

Active proponent distribution

Drilling Platforms: 89 Active Proposals

Active proposals: 89 by proposal category

Parting thoughts:

• Overall, this phase of scientific ocean drilling is doing a good job of addressing the Science Plan's themes and challenges; however, this performance goes beyond the JR to MSP and <u>Chikyu</u>-hosted expeditions. The JR cannot do it all.

• The body of active proposals, and the flow of new proposals, seems adequate to sustain IODP through its next phase (even with the JR at full utilization).

 The assessment of how proposals and expeditions are answering the call of the Science Plan themes/challenges does <u>not</u> include any post-expedition assessment, by SEP/FBs/Co-Chiefs/IODP Forum,... The international scientific ocean drilling community could and should take this on as an important ongoing priority, as we begin to envision a post-2023 program.

Thank you! Questions? Comments?