iTAP Minutes July 14 - 16 2003 Graduate School of Oceanography University of Rhode Island

Participants

iTAP Members Yusei Arai (Japan) Dave Huey (US) Masahiro Kamata (Japan) Yoshihiro Masuda (Japan; Co-chair) Vincent Maury (sent regrets) Kate Moran (US; Co-chair) Frank Schuh (US) Axel Sperber (Germany) Sigmund Stokka (sent regrets) Brian Taylor (Canada)

iTAP Liaisons Jamie Austin (IMI) Tim Byrne (iSSEP) Hisao Ito (iPC)

Introduction & Reports (Joint with iSCIMP) See iSCIMP minutes.

Joint Panel Issues (Joint with iSCIMP) See iSCIMP minutes.

Project Management (Joint with iSCIMP) See iSCIMP minutes.

Business arising from iTAP meeting #2

Project Task Group Status. At the first iTAP meeting, a recommendation was made and accepted by iPC to form a project task group for beginning the plans of Complex Drilling Programs. A meeting of the first group, titled Project Scoping Group, is planned for early August

Legacy Project Report. Elspeth Urquhart from the JOIDES office compiled a spreadsheet of all of the sites and holes in ODP to kick off this project. **ACTION: TAP members will review the spreadsheet before the next meeting and identify sites/holes that we should include as part of the legacy project.** The spreadsheet is attached (Attachment A).

Prioritize & Recommend Technical Challenges from ISP

Under major categories in the Initial Science Plan (ISP), members of iTAP prepared and summarized technical challenges IODP faces. Climate History challenges were summarized by Taylor, Gas Hydrates by Masuda, Hydrogeology had been presented at the first iTAP meeting and summarized here by Becker, and Huey summarized Zero-age Crust challenges that were consistent with the TAGII discussions (see below). The challenges are summarized in Attachment B. **ACTION: TAP members will review and complete the spreadsheet (in their area of expertise) for setting priorities at the next meeting.**

Yoshiro Kawamura (IODP/CDEX) Ted Moore (iPC) Alister Skinner (IODP/MSP)

ITAP Guests iSCIMP Members Tony Bamford Keir Becker (ODP SCICOM Chair) Marvin Gearhart Jack Germaine (MIT) Dave Goldberg (ODP/LDEO Ron Grout (ODP/TAMU) Greg Myers (ODP/LDEO) Peter Rona (IODP proponent) Howard Shatto

Other Important Technical Challenges

TAGII Presentation. Rona (proponent) presented the TAGII science objectives and technical challenges iTAP discussed the challenges (with input from liaisons and guests). iTAP considers that the drilling and logging plan of the TAG II proposal is feasible with existing ODP technology and recommends consideration of enhancements to maximize scientific returns, as follows:

- Starting hole in rubbly basalt and hydrothermal deposits: Use of the HRRS (Hard Rock Reentry System) with the true DIC system (Drill-in-Casing system without under-reamer). Also consider monobore (expandable tubular) casing for extending casing downward (Enventure, Inc.).
- 2. Penetration to 100 mbsf at 4 sites and 250 mbsf at 1 site: Review and select the best bits for the job including bicenter bit technology. Consider all feasible means to remove high-density sulfide cuttings from holes including mud properties (polymer), hole cleaning to remove cuttings, and borehole wall stabilization procedures.
- 3. Core recovery sufficient to meet scientific objectives: Provide for flexible coring operations with MDCB (Motor Driven Core Barrel), RCB (Rotary Core Barrel), and ADCP (Advanced Diamond Core Barrel), and chip cutting catcher.
- 4. Maintain stable hole for drilling, casing, and logging: Consider all means to limit lost circulation, clean hole, pump at suitable rates, etc.
- 5. Maximize data recovery: iTAP endorses TAG II proposal plan for 3 holes at each of 5 sites, as follows: (1) pilot hole with RCB spud-in to 100 mbsf to recover core in upper section and to determine conditions in hole; (2) DIC (Drill-in-Casing) to 30 mbsf, coring (MDCB, RCB, ADCB, as appropriate) to 100 mbsf in 4 holes and to 250 mbsf in 1 hole (active high-temperature sulfide mound), followed by wireline logging, as feasible; (3) Normal bit (tricone) hole to 100 mbsf with LWD/RAB (Logging While Drilling/Resistivity at Bit).

Difficulties in Deep Drilling. Arai presented a summary of the challenges we face related to deep drilling. This presentation opened up discussion on how best IODP should address these challenges – particularly at depths where extreme high temperatures will be encountered. One option would be for IODP to invoke a high temperature task team to assist in the development of technologies for deep, high temperature drilling.

Long-term Monitoring under High Temperature. Kamata presented innovative concepts on the development of high temperature concepts. Innovative developments such as those developed from cell phone technologies.

MSP Technical Needs. Skinner reported that BGS would most likely be named as one of the lead groups in the European Science Operator (ESO) group and therefore would be responsible for delivery of Mission Specific Platforms (MSP) in IODP. Their strategy would be to contract services on a case-by-case basis and would primarily lease any needed technology. One area that his group has experience in and would like to advance technology is related to improvements in coring practices and gas analyses for safety.

Other Technical Needs: ROV. Based on the science goals of IODP, it is clear that the IODP will continue to use increasingly more complex seafloor installations. These types of installations require remote intervention, and maintenance for successful operations, normally achieved using remotely operated vehicles (ROV). ROV technology has evolved to the stage where it is routinely by industry used in deep water applications.

iTAP Recommendation 2003-05: ROVs. The iTAP recommends that both full-time (non-riser and riser) platforms be outfitted with ROVs.

Other Technical Issues: Complex Drilling Projects (CDPs). SSEPs asked that iTAP discuss and clarify their perspective of CDPs. iTAP's view is that riser drilling, when required to meet science objectives, is not necessarily a CDP. CDPs are defined by the need to conduct multiple expeditions to achieve a proposed science goal and are therefore NOT driven by technological "complexities." Riser wells are

commonly conducted by industry (in water depths up to 3000 m) and methods to conduct these are well established. The design of a riser program does not require non-riser drilling (aka JOIDES Resolution). Operators, however, may need to gather other information (e.g., safety, hazard, pore pressure prediction) for well planning purposes.

Future Structure & Role of iTAP

iTAP discussed the potential "merger" with iSCIMP as a future panel and agreed that TAP should remain independent. Panel members reviewed the current SAS general purpose, mandate, and membership. iTAP agreed on the following wording for each:

General Purpose. The Technology Advisory Panel (TAP) will advise the SPC on matters related to the technological developments necessary to meet the scientific objectives of the IODP Initial Science Plan.

Mandate. The TAP will identify technical needs and recommend ways to meet those needs. Appropriate topics of concern may include:

- Advice and recommendations on performance requirements for specific technological needs.
- Assessment of whether commercial "off-the-shelf" technology can most optimally meet those needs or whether they require research and development within IODP.
- Recommendations concerning the appropriate mode for pursuing such (i.e., through IODP, universities, industry, or joint ventures).
- Advice and recommendations on the process and procedures for developing and evaluating program contracts in support of technical design and innovation.
- Regular review of the progress made by SAS and the science community in planning for the technological needs of IODP.

Membership. The TAP will consist of fifteen to eighteen members, with a nominal term of three to five years for individual members. Membership will be representative of the balance of member nations and selected by member nations. Members of TAP should specialize in the fields of marine operations on a variety of platforms, down-hole logging and instrumentation, drilling technology (including mining technology and drilling under extreme conditions), geotechnics and other disciplines as necessary. The TAP may recommend the establishment of working groups to address specific technological issues that require an added breadth of expertise. TAP will recommend to SPC the name(s) of new TAP co-chairs for their approval.

iTAP also discussed the potential continued interaction with proponents. At the first Panel Chairs meeting, it was agreed that any interaction between panels and proponents should be recommended by the SSEPs or SPC. All communication to proponents should originate from SSEPs. iTAP views the interaction with proponents as productive for both: it keeps the panel abreast of technology needs in the program and provides proponents with technical advice. In future, TAP should continue this interaction, but only when requested by either the SSEPs or SPC.

In terms of other interactions with the science community, TAP members should begin developing written technical briefs that would assist proponents on the technologies that are available to the community. **ACTION: TAP members will identify briefing topics and begin drafting one or two for discussion at the next meeting.**

Cross-platform technical issues

iTAP Recommendation 2003-06: Logging Policy. The iTAP recommends that SPPOC reformulate the existing ODP policy regarding mandatory rules for continuous coring and interval logging in all drilled holes. Some scientific drilling objectives, especially within Complex Drilling Programs, could best be served using other protocols for drilling, coring and logging.

For example, in approaching some deep targets in difficult drilling terrain, better chances of achieving optimal drilling AND scientific success may be achieved by drilling without coring directly to the deep target objective, perhaps using LWD technology. In this example, a second hole might then be drilled with either full coring or coring only in targeted zones of highest scientific interest. A new policy formulated for IODP into the future should encompass more flexibility, within the constraints of HSE, to allow use of improved drilling, coring and logging technologies and, thus, enhance scientific results.

See also iSCIMP minutes.

Membership

iTAP agreed that the panel would work best, with members with the following expertise:

- Geotechnical Engineer
- Completion Expert
- Monitoring
- DP Expert
- Riser/Wellhead Expert
- ROV Expert
- Seismics with respect to well design
- Mud Engineer
- LWD/MWD Expert
- Project Management
- High Temperature Expert
- Rock Mechanics
- Drilling Engineer
- Coring Expert

Members discussed the expertise not currently among iTAP and made a list of nominations that were forwarded to the Japanese and US national offices. iTAP agreed that additional expertise (e.g., Cementing Specialist; Logging; HSE expert) would be brought to the panel as guests when needed for special discussions.

Next Meetings

iTAP agreed that the next meeting should be held in Japan at the location of *Chikyu* in early March. iTAP also agreed that a fall video conference meeting would be a good idea with two video locations: one in Houston and one in Tokyo.

Attachments

A: TAP Technical Challenges.xls B: TAP_legacy_all_sites.xls

			Evalua	ation (A,B,	
	Challenges	Recommendation	Number & Importance	Time & Cost	Chance of Success
	Ice management	Specail case and no need to consider			
	Sampling sand	Adapt geotechnical sampling strategies (shorter cores, seabed frame, mud programs)			
Climate Change	coral reef + coring	Adapt geotechnical practices for non-riser/MSP drilling (e.g. seabed frame)			
	Sallow water coring	Adapt geotechnical practices for non-riser/MSP drilling (e.g. seabed frame)			
	modifying ODP tools for MSP	Design tools in preparation for MSPs			
	borehole stability in sallow formation	Adapt geotechnical practices for non-riser/MSP drilling (e.g. Seabed frame)			
	coring at in-situ conditions	Work with JNOC (Japan National Oil Corporation)/others * to improve on ODP tools and adapt new tools * to develop methods to extract fluid from PTS			
Gas Hydrates	handling/preservation/transportation of core for labo analysis	* to develop methods to extract fluid from PTS Work with JNOC (Japan National Oil Corporation)/others to check the capability of current technology to develop a new container if necessary			
	temperature measurement	to develop a new container if necessary Apply DTS in IODP + develop inexpensive long-term tempeature monitoring system			
	measurement of methane flux	Modify CORK technology to measure methane hydrate over time			
	bare rock spud	"Start over" with the hammer drill-in casing - write specifications & build to those specifications			
Hard Rock	coring in "rubble"	Use Rona Recommendation			
	hole stability related to temperature change and stress field	model (for example sites) stress induced by temperature change Assessment on high temperature PCS*			
	recovery of fluid samples	PCS* Improve CORK sampling devices Initiate conceptual design study to develop options for fluid sampling in rock			
Hydrogeology	in-situ measurement of fluid properties, pressure & temperature	develop "cheap" temperature long-term OBS purcahse low-flow-rate pumps develop multiple port pressure momory tools ofr different formations purhcase Geotech resistivity device comceptual design for "quick" packer measurements			

LEG PF	RECRUISE NAME	SITE PRIORITY	SITE	HOLE	SUCC ESS	# Holes	OPS	Depth	Logge d	Objective	SITE_COMMENT
100FL		Primary					APC/XCB	550	NO	High quality continuous sequence through the entire Neogene	
100FL		Primary					APC/XCB	750	NO	Good quality Paleogene pelagic record Extent of widespread mass movement, sediment	
100 MF	IFAN	Primary					APC/XCB	600	NO	characteristics	
101BA	AH-7A	Primary-1	629				APC/XCB	200	NO	Sedimentary record of an upper slope and contributions of pelagic/hemipelagic deposition	
101LB	3B-05xLBB-10	Added	630				APC/XCB	200	NO	Sedimentary record of an upper slope and contributions of pelagic/hemipelagic deposition	
101BA	AH-8A	Primary-1	628				APC/XCB	200	NO	Sedimentary record of the lower slope in accretionary setting. Diagenetic vs. sea level effects.	
101BA	AH-9A	Primary-1 (1)					APC/XCB	200	NO	Document record of distal turbidites and response to sea level fluctuations	
										Document record of distal turbidites and response to sea level fluctuations: date and define nature of the seismic	
101BA 101BA		Primary-1 (2) Primary-1	627				APC/XCB/RCB	600 1500	YES YES	facies Tectonic vs environmental controls on platform growth	
101BA	AH-1B	Alternate	000					1500	YES	Tectonic vs environmental controls on platform growth	
101BA 101BA		Alternate Alternate	626					1500 1500		Tectonic vs environmental controls on platform growth Tectonic vs environmental controls on platform growth	
										Sedimentary record of a steep bypass slope, contributions fo	
		Primary-1 Primary-1	631 633				APC/XCB APC/XCB	200 200	NO NO	pelagic/hemipelagic and sediment gravity flows. Evaluate lower slope, and diagenetic vs sea level effects.	
101BA 101BA		Primary-1 Primary-2	632 635				RCB RCB	1300 200-300	YES NO	Sample velocity discontinuity Sample target horizon if Exuma Sound not successful.	
	AH-3B	Alternate					RCB RCB	200-300	NO NO	Sample target horizon if Exuma Sound not successful. Sample target horizon if Exuma Sound not successful.	
										Document interplay of carbonate fan and contourite	
	SDP-98	Primary-3 Alternate	634				APC/XCB RCB	1000 200-300	YES NO	deposition with effects of sea level fluctuation Sample target horizon if Exuma Sound not successful.	
101SL	L334	Added	636				RCB	200-300	NO	Sample target horizon if Exuma Sound not successful.	
10241 10241		Primary Alternate	418A						YES	Re-entry, fish logging tool from hole, deepen if time available If 418A tool recovery not successful, re-enter and log	
10260		Alternate				1	Drill	1500	YES	Logging and vertical seismic profiling Sample basement of buried seamount in Jurassic; determint	
102NJ	J-8	Alternate				1		750+	YES	the spreading rate and subsidence history Determine Oligocene to recent sedimentation history of	
102NJ		Alternate				1		1000	YES	upper continental rise off New Jersey	
103GA 103GA	AL-1B	Alternate Alternate									
103GA 103GA		Primary-2 Primary-1	637			1 1	RCB RCB	300 300	NO NO	Obtain fresh ultramafic rocks from the lherzolite ridge. Obtain fresh ultramafic rocks from the lherzolite ridge.	
103GA		Alternate								Continuous coring through 300m (sed) and 100m (basement)	
103GA		Primary-2 Alternate				1		400	YES	- information about earliest history of margin.	
103G/		Alternate						1000	YES	Target - pre-rift sediments.	
103GA		Primary-1	638			1		1750	YES	Syn-rift and pre-rift sediments of the subsident continental margin.	
103 103		Added ? Added ?	639 641								
103 103 G/		Added ? Alternate	640								
	AL-4D	Alternate Alternate									
104VC	OR 2A	Primary-1	642				APC/reentry		YES		
104VC 104VC		Alternate Primary-1	-				APC/reentry APC/reentry	1250 1000			
104VC	OR 4	Primary-2	643				APC/XCB	refusal or 1100	YES		
104VC 104VC		Primary-3 Alternate	644				APC APC/reentry	200 1300	NO YES		
104VC							APC/reentry		YES	One of the other states of the birth latitude Frances	
	OR 3B	Alternate									
105BB		Alternate Primary-1	645			2	APC/XCB RCB re-entry	700 / 2000		Oligocene, early post-rift sediments.	
	B-3B	Primary-1	645				re-entry	250/450/1	YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample	
105LA	B-3B A-5	Primary-1 Primary-1				2	re-entry APC/XCB/RCB	250/450/1 486 250/410/7	YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eink Ridge. Sample sedimentary	
105LA 105LA	B-3B A-5 A-5A	Primary-1 Primary-1 Alternate	646			2 2	re-entry APC/XCB/RCB APC/XCB/RCB	250/450/1 486 250/410/7 09 250/450/8	YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eccene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eirik Ridge. Sample sedimentary section for high-latitude Eccene-Oligocene. Date drift deposits of Gloria Drift. Sample basement for age	
105LA	B-3B A-5 A-5A	Primary-1 Primary-1				2	re-entry APC/XCB/RCB	250/450/1 486 250/410/7 09	YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eirik Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene.	
105LA 105LA	B-3B A-5 A-5A A-9	Primary-1 Primary-1 Alternate	646			2 2	re-entry APC/XCB/RCB APC/XCB/RCB	250/450/1 486 250/410/7 09 250/450/8 00	YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eirik Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposito of Giria Drift. Sample basement for age calibration of magnetic anomalies.	
105LA 105LA 105LA 105LA	B-3B A-5 A-5A A-9 A-2A	Primary-1 Primary-1 Alternate Alternate Alternate	646			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB	250/450/1 486 250/410/7 09 250/450/8 00 250/450/9 03	YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eirik Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Gloria Drift. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and	
105LA 105LA 105LA	B-3B A-5 A-5A A-9 A-2A	Primary-1 Primary-1 Alternate Alternate	646			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB	250/450/1 486 250/410/7 09 250/450/8 00 250/450/9	YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eccene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eirik Ridge. Sample sedimentary section for high-latitude Eccene-Oligocene. Date drift deposits of Gloria Drift. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion.	
105LA 105LA 105LA 105LA	B-3B A-5 A-5A A-9 A-2A ite 1	Primary-1 Primary-1 Alternate Alternate Alternate	646			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB	250/450/1 486 250/410/7 09 250/450/8 00 250/450/9 03	YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eirk Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Ginri Drift. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion.	
105LA 105LA 105LA 105LA 106Sit	B-3B A-5 A-5A A-9 A-2A ite 1 ite 2	Primary-1 Primary-1 Alternate Alternate Alternate Primary-1C Primary-1A	646 647 648			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB	250/450/1 486 250/410/7 09 250/450/8 00 250/450/9 03 ADAP ADAP	YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eink Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Gloria Drift. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion.	
105LA 105LA 105LA 105LA 106Sit 106Sit	B-3B A-5 A-5A A-9 A-2A ite 1 ite 1 ite 2 ite 3	Primary-1 Primary-1 Alternate Alternate Alternate Primary-1C Primary-1A Primary-1B	646			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB	250/450/1 486 250/410/7 09 250/450/8 00 250/450/9 03 ADAP ADAP	YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eink Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Gink Ridge. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E nodal basin	
105LA 105LA 105LA 105LA 106Sit 106Sit	B-3B A-5 A-5 A-9 A-2A A-2A ite 1 ite 2 ite 3 ite 4	Primary-1 Primary-1 Alternate Alternate Primary-1C Primary-1A Primary-1B Alternate	646 647 648			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB RCB RCB	250/450/1 486 250/410/7 09 250/450/8 00 250/450/9 03 ADAP ADAP ADAP	YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eccene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eirk Ridge. Sample sedimentary section for high-latitude Eccene-Oligocene. Date drift deposits of Girk Ridge. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Drep as possible into basement beneath the E non-	
105LA 105LA 105LA 105LA 106Sit 106Sit	B-3B A-5 A-5 A-9 A-2A A-2A ite 1 ite 2 ite 3 ite 4	Primary-1 Primary-1 Alternate Alternate Alternate Primary-1C Primary-1A Primary-1B	646 647 648			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB	250/450/1 486 250/410/7 09 250/450/8 00 250/450/9 03 ADAP ADAP	YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eirk Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Gin's Midge. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E non- transform section of the fracture zone. Libhology, Stratigraphy and age of pre-, syn-, and post-rift	
105LA 105LA 105LA 105LA 106Sit 106Sit	B-3B A-5 A-5A A-9 A-2A ite 1 ite 2 ite 3 ite 3 ite 4 ite 5	Primary-1 Primary-1 Alternate Alternate Primary-1C Primary-1A Primary-1B Alternate	646 647 648			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB RCB RCB RCB RCB RCB RCB	250/450/1 486 250/410/7 09 250/450/8 00 250/450/9 03 ADAP ADAP ADAP	YES YES YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eirik Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Girik Ridge. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E noo- transform section of the fracture zone valley. Lithology, stratigraphy and age of pre-, syn-, and post-rift series, document pre-Messinian sediments, date regional stretching.	
105LA 105LA 105LA 105LA 106Sit 106Sit 106Sit 106Sit	B-3B A-5 A-5A A-9 A-2A ite 1 ite 1 ite 2 ite 3 ite 4 ite 5 YR-1B	Primary-1 Primary-1 Alternate Alternate Primary-1C Primary-1A Primary-1B Alternate Alternate	646 647 648 649			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB RCB RCB RCB RCB	250/450/1 486 250/410/7 250/450/8 00 250/450/9 03 ADAP ADAP ADAP ADAP ADAP	YES YES YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eirk Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Girk Ridge. Sample sedimentary section for magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E noo- transform section of the fracture zone. Deep as possible into basement beneath the E non- transform section of the fracture zone valley. Lithology, stratigraphy and age of pre-, syn-, and post-rift series, document pre-Messinian sediments, date regional stretching.	
105 LA 105 LA 105 LA 105 LA 106 Sit 106 Sit 106 Sit 106 Sit	B-3B A-5 A-5 A-5 A-9 A-2A ite 1 ite 1 ite 2 ite 3 ite 3 ite 4 ite 5 YR-1B YR-2	Primary-1 Primary-1 Alternate Alternate Primary-1C Primary-1A Primary-1B Alternate Alternate Primary-1	646 647 648 648 649 654			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB RCB RCB RCB RCB RCB RCB	250/450/1 486 250/410/7 09 250/450/8 00 250/450/9 03 ADAP ADAP ADAP ADAP ADAP ADAP	YES YES YES YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eirk Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Girk Ridge. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E non- transform section of the fracture zone valley. Lithology, stratigraphy and age of pre-, syn-, and post-rift serteching. Establish deep-sea stratigraphic type-section Nature of pre-, syn-, and post-rift sediments on continental hinned crust, compare.	
105 LA 105 LA 105 LA 105 LA 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit	B-3B A-5 A-5 A-5 A-2 A-2 A-2 A-2 A-2 A-2 A-2 A-2 A-2 A-2	Primary-1 Primary-1 Alternate Alternate Alternate Primary-1C Primary-1A Primary-1B Alternate Alternate Primary-1 Primary-1 Primary-1	646 647 648 649 654 653			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB RCB RCB RCB RCB RCB RCB	250/450/1 486 250/410/7 09 250/450/9 03 ADAP ADAP ADAP ADAP ADAP ADAP ADAP 200	YES YES YES YES YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eink Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Gloria Drift. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E non- transform section of the fracture zone valley. Lithology, stratigraphy and age of pre-, sym., and post-nit series, document pre-Messinian sediments, date regional stretching. Establish deep-sea stratigraphic type-section Nature of pre-, sym., and post-rift sediments on continental thinned crust, compare. Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact	
105 LA 105 LA 105 LA 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 107 TY 107 TY	B-3B A-5 A-5 A-5 A-2 A-2 A-2 A-2 A-2 A-2 A-2 A-2 A-2 A-2	Primary-1 Primary-1 Alternate Alternate Primary-1C Primary-1C Primary-1A Alternate Primary-1B Alternate Primary-1 Primary-1 Primary-1 Primary-1 Primary-1	646 647 648 649 653 653 652			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB RCB RCB RCB RCB RCB RCB	250/450/1 486 250/410/7 250/450/9 03 ADAP ADAP ADAP ADAP ADAP ADAP 200 900+	YES YES YES YES YES YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eink Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Gink Ridge. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E nodal basin of Kane Fracture Zone. Deep as possible into basement beneath the E non- transform section of the fracture zone valley. Lithology, stratigraphy and age of pre-, syn-, and post-rift series, document pre-Messinian sediments, date regional stretching. Establish deep-sea stratigraphic type-section Nature of pre-, syn-, and post-rift sediments on continental thinned crust, compare. Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact	
105 LA 105 LA 105 LA 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 107 TY 107 TY 107 TY 107 TY	B-3B A-5 A-5 A-5A A-9 A-2A ite 1 ite 2 ite 3 ite 3 ite 4 ite 4 ite 5 YR-1B YR-2 YR-3A YR-5B YR-5B'	Primary-1 Primary-1 Alternate Alternate Primary-1C Primary-1C Primary-1A Alternate Primary-1B Alternate Primary-1 Primary-1 Primary-1 Alternate Alternate	646 647 648 649 653 653 652 651			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB RCB RCB RCB RCB RCB RCB	250/450/1 486 250/410/7 02 250/450/9 03 ADAP ADAP ADAP ADAP ADAP ADAP 300 200 900+ 550 550	YES YES YES YES YES YES YES YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eink Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Eink Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Gink Ridge. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E nodal basin of Kane Fracture Zone. Deep as possible into basement beneath the E non- transform section of the fracture zone valley. Lithology, stratigraphy and age of prer, syn-, and post-rift series, document pre-Messinian sediments, date regional stretching. Establish deep-sea stratigraphic type-section Nature of prer, syn-, and post-rift sediments on continental thinned crust, compare. Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature and age of the seismic sequences covering the whole central Marski basin, study the tephrachronology of this	
105 LA 105 LA 105 LA 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 107 TY 107 TY	B-3B A-5 A-5 A-5 A-2 A-2 A-2 A-2 A-2 A-2 A-2 A-2	Primary-1 Primary-1 Alternate Alternate Primary-1C Primary-1A Primary-1A Alternate Alternate Primary-1 Primary-1 Primary-1 Primary-1	646 647 648 649 653 653 652			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB RCB RCB RCB RCB RCB RCB	250/450/1 486 250/410/7 09 250/450/8 00 250/450/9 03 ADAP ADAP ADAP ADAP ADAP ADAP 300AP 200 900+	YES YES YES YES YES YES YES YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eink Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Eink Ridge. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E nod- transform section of the fracture zone valley. Lithology, stratigraphy and age of pre-, syn-, and post-rift series, document pre-Messinian sediments, date regional stretching. Establish deep-sea stratigraphic type-section Nature of pre-, syn-, and post-rift sediments on continental hinned crust, compare. Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature age of the seriis cocucence covering the whole central Marsiki basin, study the tephrachronology of this area. Sample the prerift/synrift contact, if Site 3 fails objective.	
105 LA 105 LA 105 LA 105 LA 106 Sit 106 Sit 106 Sit 106 Sit 107 TY 107 TY 107 TY 107 TY 107 TY	B-3B A-5 A-5 A-5A A-9 A-2A ite 1 ite 2 ite 3 ite 3 ite 4 ite 5 YR-1B YR-2 YR-3A YR-5B YR-5B YR-7B YR-7B YR-4	Primary-1 Primary-1 Alternate Alternate Alternate Primary-1C Primary-1A Primary-1B Alternate Primary-1 Pri	646 647 648 649 654 653 652 651 651			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB RCB RCB RCB RCB RCB RCB	250/450/1 486 250/410/7 09 250/450/9 03 ADAP ADAP ADAP ADAP ADAP 800 200 900+ 550 550	YES YES YES YES YES YES YES YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eirk Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Girk Ridge. Sample sedimentary section for magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E nord- transform section of the fracture zone valley. Lithology, stratigraphy and age of pre-, syn-, and post-rift serteching. Statelish deep-sea stratigraphic type-section Nature of pre-, syn-, and post-rift sediments, date regional stretching. Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of open crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of open crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of open crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of open crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of open crust in central part of basin, hydro	
105 LA 105 LA 105 LA 105 LA 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 107 TY 107 TY 107 TY 107 TY 107 TY 107 TY	B-3B A-5 A-5 A-5A A-9 A-2A ite 1 ite 2 ite 3 ite 3 ite 4 ite 5 YR-1B YR-2 YR-3A YR-5B YR-5B YR-7B YR-7B YR-4	Primary-1 Primary-1 Alternate Alternate Alternate Primary-1C Primary-1A Primary-1B Alternate Primary-1 Primary-1 Primary-1 Primary-1 Primary-1 Alternate Primary-1 Pri	646 647 648 649 659 653 652 651 650 656			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB RCB RCB RCB RCB RCB RCB	250/450/1 486 250/410/7 09 250/450/9 03 ADAP ADAP ADAP ADAP ADAP 300 200 900+ 550 550 550	YES YES YES YES YES YES YES YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eink Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Gink Ridge. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E nodal basin of Kane Fracture Zone. Deep as possible into basement beneath the E non- transform section of the fracture zone valley. Lithology, stratigraphy and age of pre-, syn-, and post-rift series, document pre-Messinian sediments, date regional stretching. Establish deep-sea stratigraphic type-section Nature of pre-, syn-, and post-rift sediments on continental thinned crust, compare. Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature and age of the seismic sequences covering the whole central Marsiki basin, study the tephrachronology of this area. Sample the prerift/synrift contact, if Site 3 fails objective.	
105 LA 105 LA 105 LA 105 LA 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 107 TY 107 TY 107 TY 107 TY 107 TY	B-3B A-5 A-5 A-5A A-9 A-2A ite 1 ite 2 ite 3 ite 4 ite 5 YR-1B YR-2 YR-3A YR-5B YR-5B YR-5B YR-5A	Primary-1 Primary-1 Alternate Alternate Alternate Primary-1C Primary-1A Primary-1B Alternate Primary-1 Primary-1 Primary-1 Primary-1 Primary-1 Alternate Primary-1 Pri	646 647 648 649 659 653 652 651 650 656			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB RCB RCB RCB RCB RCB RCB	250/450/1 486 250/410/7 09 250/450/9 03 ADAP ADAP ADAP ADAP ADAP 300 200 900+ 550 550 550	YES YES YES YES YES YES YES YES YES NO	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eink Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Eink Ridge. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E nodal basin of Kane Fracture Zone. Deep as possible into basement beneath the E non- transform section of the fracture zone valley. Lithology, stratigraphy and age of pre-, syn-, and post-rift series, document pre-Messinian sediments, date regional stretching. Establish deep-sea stratigraphic type-section Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature and age of the seismic sequences covering the whole central Marsik basin, study the tephrachronology of this area. Sample the prerift/synrift contact, rif Site 3 fails objective. Nature of highly magnetic N-S trending ridge at the boundary between continental and oceanic crust.	
105 LA 105 LA 105 LA 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 107 TY 107 TY 107 TY 107 TY 107 TY 107 TY 107 TY 107 TY	B-3B A-5 A-5 A-5 A-2 A-2 ite 1 ite 2 ite 3 ite 3 ite 4 ite 3 ite 4 ite 5 YR-1B YR-2 YR-3A YR-5B YR-5B YR-5B YR-7B YR-4 YR-5A YR-6	Primary-1 Alternate Alternate Alternate Primary-1C Primary-1C Primary-1A Primary-1A Alternate Primary-1 Primary-1 Primary-1 Primary-1 Primary-1 Primary-1 Primary-2 Primary-2 Primary-2 Primary-2	646 647 648 649 659 653 652 651 650 656			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB RCB RCB RCB RCB RCB RCB	250/450/1 486 250/410/7 09 250/450/8 00 250/450/9 03 ADAP ADAP ADAP ADAP ADAP 300 200 900+ 550 550 420 869 100 600	YES YES YES YES YES YES YES YES YES NO YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eirk Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Girk Ridge. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E nord- transform section of the fracture zone valley. Lithology, stratigraphy and age of pre-, syn-, and post-rift series, document pre-Messinian sediments, date regional stretching. Nature of pre-, syn-, and post-rift series, document pre-Messinian sediments, date regional stretching. Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of age of the seismic sequences covering the whole central Marsiki basin, study the tephrachronology of this area. Sample the preriff/synrift contact, if Site 3 fails objective. Nature of highly magnetic N-S trending ridge at the boundary between continental and oceanic crust. Document age of contact between pre-and syn-rift sediments and the pre-iff series. Compare timing of riting in Marsili Basin with Vavilov Basin. SE Tyrrhenian volcanic activity, to determine youngest	
105 LA 105 LA 105 LA 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 107 TY 107 TY 107 TY 107 TY 107 TY 107 TY 107 TY 107 TY 107 TY	B-3B A-5 A-5 A-5 A-5 A-2 A-2 A-2 A-2 A-2 A-2 A-2 A-2	Primary-1 Primary-1 Alternate Alternate Primary-1C Primary-1C Primary-1A Primary-1A Alternate Primary-1 Primary-1 Primary-1 Primary-1 Primary-1 Primary-2 Primary-2 Primary-2 Primary-2 Primary-2 Primary-2	646 647 648 649 659 653 652 651 650 656			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB RCB RCB RCB RCB RCB RCB	250/450/1 486 250/410/7 09 250/450/9 03 ADAP ADAP ADAP ADAP ADAP 300 200 550 550 550 420 869 100 600 400	YES YES YES YES YES YES YES YES YES NO YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eink Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Ginit Ridge. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E non- transform section of the fracture zone valley. Lithology, stratigraphy and age of pre-, syn-, and post-rift series, document pre-Messinian sediments, date regional stretching. Nature of pre-, syn-, and post-rift sediments on continental thinned crust, compare. Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature and age of the seismic sequences covering the whole central Marsiki basin, study the tephrachronology of this area. Sample the preriftynrift contact, if Site 3 fails objective. Nature of fifts eaism. Study the tephrachronology of this area. Sample the preriftsynrift contact, if Site 3 fails objective. Nature of iffely magnetic IN-S trending ridge at the boundary between continental and oceanic crust. Set Tyrrhenian volcanic activity, to determine youngest Cenozoic paleometic stratigraphy and tephrachronology. Sample pre-, syn-, and post-rift sediments on tilted block to	
105 LA 105 LA 105 LA 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 106 Sit 107 TY 107 TY 107 TY 107 TY 107 TY 107 TY 107 TY 107 TY	B-3B A-5 A-5 A-5 A-5 A-2 A-2 A-2 A-2 A-2 A-2 A-2 A-2	Primary-1 Alternate Alternate Alternate Primary-1C Primary-1C Primary-1A Primary-1A Alternate Primary-1 Primary-1 Primary-1 Primary-1 Primary-1 Primary-1 Primary-2 Primary-2 Primary-2 Primary-2	646 647 648 649 659 653 652 651 650 656			2 2 2	re-entry APC/XCB/RCB APC/XCB/RCB APC/XCB/RCB RCB RCB RCB RCB RCB RCB RCB RCB RCB	250/450/1 486 250/410/7 09 250/450/8 00 250/450/9 03 ADAP ADAP ADAP ADAP ADAP 300 200 900+ 550 550 420 869 100 600	YES YES YES YES YES YES YES YES YES YES	Oligocene, early post-rift sediments. Sample sedimentary section for Eocene-Oligocene. Sample basement for age calibration of magnetic anomalies date drift deposits of Eink Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Eink Ridge. Sample sedimentary section for high-latitude Eocene-Oligocene. Date drift deposits of Eink Ridge. Sample basement for age calibration of magnetic anomalies. Sample sedimentary section for E-W paleoceanographic transect. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and crustal accretion. Deep as possible into basement beneath the E nodal basin of Kane Fracture Zone. Deep as possible into basement beneath the E non- transform section of the fracture zone valley. Lithology, stratigraphy and age of prer, syn-, and post-rift series, document pre-Messinian sediments, date regional stretching. Establish deep-sea stratigraphic type-section Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature and age of the seismic sequences covering the whole central Marsik basin, study the tephrachronology of this area. Sample the prerift/synrift contact, if Site 3 fails objective. Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basement contact Nature of oceanic crust in central part of basin, hydrothermal deposits at sediment/basemen	

					SUCC				Logge		
LEG	PRECRUISE NAME	SITE PRIORITY	SITE	HOLE	ESS	# Holes	OPS	Depth		Objective Nature and age of the seismic sequences covering the whole	SITE_COMMENT
107	TYR-7A	Alternate					APC/XCB	520	YES	central Marsiki basin, study the tephrachronology of this area.	
										High resolution record of the Neogene evolution of the Canary Current; variation of eolian-dust discharge; calibrate	
108	139R	Primary-10					APC/XCB	refusal/35 0		a sequence of hiatuses with phases of enhanced contour- current activity.	
108	MAU-4	Primary-3	659				APC/XCB	refusal/30 0		Deep water paleoceanography and circulation history of Saharan air layer.	
								refusal/25		Document non-upwelling paleoceanography and pelo- productivity of Canary Current off Cape Blanc and compare	
108	MAU-5	Primary-1	657				APC/XCB	0 refusal/30		with upwelling cell at MAU-6. High resolution hemipelagic sediment record of the Late	
108	MAU-6	Primary-2	658				APC/XCB	0		Neogene. Compare with MAU-5 Monitor exchange of bottom water betwewen southern and	
108	SLR-1	Primary-8	660				APC/XCB	refusal/30 0		northern parts of E Atlantic through the key passage of Kane Gap.	
108	SLR-1	Added ?	661								
108	EQ-3	Primary-5	668				APC/XCB	refusal/~4 00 Eocene		Reconstruction of bathymetric profiles of sediment parameters which record the history of deep water circulation	
										Reconstruction of bathymetric profiles of sediment	
108	EQ-4a	Primary-7	667				APC	150		parameters which record the history of deep water circulation	
108	EQ-5	Primary-6	666				APC	150		Reconstruction of bathymetric profiles of sediment parameters which record the history of deep water circulation	
										Reconstruction of bathymetric profiles of sediment	
108	EQ-6	Primary-11	665				APC	150		parameters which record the history of deep water circulation Investigate the history of the divergence in Equatorial Altantic	
108	EQ-7	Primary-9	662				APC	150		and the Benguela Current, trace development during and prior to N hemisphere glaciation.	
108			663							Tract the 23000-year rhythm found in late Quaternary core	
108	EQ-9	Primary-4	664				APC	180		back into earlier Quaternary and pre-Quaternary time to determine ice-volume effect.	
								reentry/AD		Origin, evolution and nature of oceanic crust at slow spreading ridge. Processes of magma generation and	
109	648B	Primary-1	648				RCB	AP	YES	crustal accretion. Establish a baseline set of logs for basaltic crust near a slow	
109	395A	Primary-2	395					reentry	YES	spreading mid-ocean ridge. Drill as deep as possible into oceanic basement / major	
109 109		Primary-2 Added ?	669 670				RCB	ADAP	NO	fracture zone.	
108		Added ?	070							Study an active hydrothermal system and associated sulfide	
109	649	Primary-4				multiple	RCB	reentry (NO	deposits; hydrothermal alteration of mid-ocean ridge basalts.	
109	418A	Primary-2					RCB	reentry / ADAP	YES	Nature, structure and history of hydrothermal alteration in old oceanic crust.	
										Establish reference hole in oceanic sediment to measure physical and hydrological properties prior to apparent	
110	_AF-0	Primary-1					wash	900	YES	deformation. Measure characteristics above and below decollment.	
	154	Direct				•	APC/XCB; RCB/wash;	420 420	V=-	Complete penetration of lithologic section of accretionary toe. Determine sequence of structural features related to	
110	_AF-1	Primary-1	671			3	reentry/RCB	860	YES	accretionary processes.	
110	_AF-2	Primary-1	675			2	APC/XCB; RCB/WASH	850 850	YES	Measure characteristic in offscraped sequence above and at decollement. With LAF-1 establish lateral gradients.	
110	_AF-3	Primary-1	674			2	APC/XCB; RCB/WASH	500 500	YES	Same as LAF-2. Test for fluid migration.	
110	_AF-3A	Alternate	673			2	APC/XCB; RCB/WASH	600 600	YES	Same as LAF-3	
										Study hydrogeology and structural characteristics of accretionary wedge. Determine amount of displacement on	
	_AF-4	Alternate					APC/XCB or RCB APC/XCB or			decollement. Estimate quantity of last material. Thrust studies. Determine sedimentary character of fold infill.	
		Alternate					RCB APC/XCB or	400		Calibrate seismic stratigraphy. Study hydrogeology, structural geology, history of	
	_AF-6 504B	Alternate Primary-1	504B				RCB reentry/RCB	700 500	YES	deformation in forearc basin. Deepen penetration of Layer 2B. Log deep section	
111	MM-1	Primary-1	678				APC/XCB	refusal/~3 00	YES	Biostratigraphy, hydrology, heat flow.	
111		Added ? Alternate	677				APC/XCB	325		Hydrology, chemistry, PP, lateral P gradients in basement	
		Alternate					APC/XCB	325		Hydrology, chemistry, PP, lateral P gradients in basement Neogene to Quaternary upwelling deposits at landward site	
112	PER-1	Primary-P2	681			2	APC, 1 oriented	200	NO	of E-W transect Quaternary upwelling deposits an andward site	
110	PER-2	Primany P4				2	ADC 1 printed	200	NO	paleoenvironmental conditions of deposition. Distribution of dolomites and their formation in organic C-rich muds.	
112	PER-2A	Primary-P4 Alternate				2	APC, 1 oriented APC, 1 oriented	200	NO	Same as PER-2	
		Alternate Alternate	687			2 2	APC, 1 oriented APC, 1 oriented	200 200	NO NO	Same as PER-2 Same as PER-2	
		Drimor : D4	070			2	ADOWOD	600	VEC	Seaward site of transect across upper slope mud lens. Recover Quaternary upwelling sediments and drill to major	
112	PER-3	Primary-P1	679			2	APC/XCB	600	YES	Mesozoic/Paleozoic unconformity Seaward site of transect across upper slope mud lens.	
112	PER-3A	Alternate	680			2	APC/XCB	700	YES	Recover Quaternary upwelling sediments and drill to major Mesozoic/Paleozoic unconformity	
										Southern site in lateral transect across upper slope mud lens Recover Quaternary upwelling sediments and investigate	
112		Primary Primary	686			2 2	APC APC	200 200	NO NO	dolomite generation. Same as PER-4A	
		Alternate Alternate				2 2	APC APC	200 200	NO NO	Same as PER-4A Same as PER-4A	
										Center of transect and star pattern across upper slope mud lens. Recover Quaternary upwelling sediments and	
112	PER-5	Primary-P1				2	APC	200	YES	investigate dolomitization processes.	
										Neogene subsidence and sediment accumulation rates . Investigate tectonic and metamorphic history of underlying	
112	PER-6	Primary-T1					APC/XCB	1100	YES	basement rock. Reconstruct paleoenvironment. Complete Neogene sequence (0-600), penetration into deep	
112	PER-7	Primary-T1					APC/XCB RCB?	1100	YES	Paleogene and Mesozoic sediments, possibly sample metamorphic basement.	
	PER-7A	Alternate Added ?	688				APC/XCB RCB?	1100		Same as PER-7	Between PER-7A and PER-8?
										Determine age and nature of leading edge of metamorphic block in trasition zone - foundation of Peru margin. Date	
112	PER-8	Primary-T2	682				RCB	600	YES	metamorphic stages. Ascertain record of vertical movement of sediments.	
. 12			502							Recover Neogene and Quaternayr upwelling sediments,	
112	PER-9A	Primary-P6	684			2	APC	200	NO	prcesses of dolomitization in organic carbon-rich sediments. Seaward shallow hole of transect in upper slope mud wedge	
112	PER-10	Primary-P5				2	APC	200	NO	and patches.	

1.50			SITE	HOLE	SUCC ESS	# a aa	0.00	Denth	Logge d	Objective	
LEG	PRECRUISE NAME	SITE PRIORITY	SILE	HOLE	E55	# Holes	UPS	Depth	a	Objective Neogene sediments at seaward edge of Yaquina Basin.	SITE_COMMENT
112	PER-14	Primary-T1	683				APC/XCB	850	YES	Determine age and nature of leading edge of metamorphic block in transition zone-foundation of Peru margin.	
			000					000		Determine age and nature of leading edge of metamorphic	
										block in trasition zone - foundation of Peru margin. Date metamorphic stages. Ascertain record of vertical movement	
	PER-15 PER-16	Alternate Alternate					APC/XCB APC/XCB	900 1300	YES YES	of sediments. Same as PER-14, PER17A	
112	PER-16A	Alternate					APC/XCB	790	YES	Same as PER-14, PER17A	
112	PER-17	Alternate	685				APC/XCB	1012	YES	Same as PER-17A Determine age of accretionary prism immediately adjacent to	
										metamorphic block which is foundation of the Peru margin. Reconstruct truncation history of margin - drill transition	
										zone. Determine the vertical motion history of sedimentary	
	PER-17A PER-18B	Primary-T1 Alternate					APC/XCB APC/XCB	1190 1000	YES YES	basins. Same as PER-14, PER17A	
112	PER-18C	Alternate					APC/XCB	960	YES	Same as PER-14, PER17A	
112	PER-18D	Alternate					APC/XCB	1250	YES	Same as PER-14, PER17A Early Cenozoic - Late Mesozoic paleoenvironmental record	
113	W1A	Primary-I				2	APC/XCB	425	NO	and age of Maud Rise	
113	W1B	Primary-I	689			2	APC/XCB	365	NO	Early Cenozoic - Late Mesozoic paleoenvironmental record and age of Maud Rise	
										Maud Rise as "dipstick" into paleo-ocean, away from	
113	W2A	Primary-I	690			2	APC/XCB	370	NO	terrigenous sediment sources and unstable sediments. Maud Rise as "dipstick" into paleo-ocean, away from	
113	W2B	Primary-I				2	APC/XCB	490	NO	terrigenous sediment sources and unstable sediments. Date dipping reflectors. Examine the record of Antarctic	
										terrestrial vegetation in overlying pre-glacial terrigenous	
113	W4/1	Primary-I	691				RCB	1100	YES	sediments to understand early stages of climatic deterioration.	
113	W4/1Alt	Alternate	692				RCB	1170	YES	Same as W4/1	
113	W4/2	Primary-I					APC/XCB	300	NO	Same as W4/1 Age of ocean-dipping reflector. Unknown Antarctic terrestrial	
110	W4-I/1	Alternate	693				APC/XCB/RCB	520	NO	environment through Late Mesozoic and Cenozoic, from overlying sediments.	
113	W4-I/2	Alternate	093				RCB	400	NO	Same as W4-I/1	
113	W4-I/3 W4-I/4	Alternate					RCB	390	NO	Same as W4-I/1	
113	vv+-1/+	Alternate					RCB	1000	YES	Same as W4-I/1	
113	W4-II/7	Alternate					APC/XCB/RCB	500	YES	Neogene paleoenvironmental history of the Antarctic margin. Cretacous to Miocene paleoenvironmental history of	
113	W4-II/8	Alternate					RCB	600	YES	Gondwanaland. Drill to penetrate reflector U5.	
										Late Jurassic to Oligocene paleoenvironmental history of the	
113	W4-II/2	Alternate					RCB	350	NO	Antarctic margin, age and composition of dipping reflectors.	
										Examine the history of bottom water production. Provide a more continuous record of continental glaciation and pre-	
	W5	Primary-I	694				APC/XCB/RCB	900	YES	glacial vegetation.	
	W5A W5B	Alternate Alternate					APC/XCB/RCB APC/XCB/RCB	900 800		Same as W5 Same as W5	
	W5C	Alternate					APC/XCB	250		Same as W5	
	W5D W5E	Alternate Alternate					APC/XCB/RCB APC/XCB/RCB	600 600	YES YES	Same as W5 Same as W5	
113	W5F	Alternate				_	APC/XCB/RCB	850	YES	Same as W5	
113	W6	Primary-I	697			2	APC/XCB	500	YES	Examine deep-water circulation history of the region. Determination of Antarctic vertical water mass structure;	
113	W7	Primary-I	695			2	APC/XCB	500	YES	glacial history of region.	
113	W8	Primary-I	696			2	APC/XCB	500	YES	Determination of Antarctic vertical water mass structure; glacial history of region.	
										Sample the essentially pelagic section above the 'break-up unconformity' on the eastern margin, but drill to the	
										unconformity at least once to improve tectonic constraints on	
113	W8A	Alternate				2	APC/XCB	500	NO	paleo-depth calculations. Sedimentation and geochemistry of a high-latitude backarc	
113	W10	Alternate				2	APC	200	NO	basin.	
										Paleoceanography and sediment history related to Drake Passage opening in Middle Cenozoic. Siliceous biogenic	
113	W11	Alternate					APC/XCB/RCB	950	YES	record. Sample a high-resolution record of sea ice and	
										paleoceanography based on assemblage and lithologic	
	W12 W13	Alternate Alternate				2	APC APC/XCB	180 300	NO NO	variations Save as W12.	
110		Alternate				2		000	NO	Provide a pre- to post-gateway record with which to interpret	
114	SA2A	Alternate				2	APC/XCB	650	YES	the influence of gateway formation on Southern Ocean and South Atlantic paleoceanography.	
114	SA2B	Alternate				2	APC/XCB	650		Same as SA2A	
	SA2C SA2D	Alternate Alternate				2 2	APC/XCB APC/XCB	650 650	YES YES	Same as SA2A Same as SA2A	
114	SA2ALT-A	Primary	699			2	APC/XCB	750	YES	Same as SA2A	
114	SA2ALT-B	Alternate	700			2	APC/XCB	400	YES	Same as SA2A	
										Obtain a sedimentary record of the oceanic gateway between the South Atlantic and Weddell Basin. Provide a	
										history of deep water circulation ghrough the gateway as a	
	SA3A SA3B	Primary Alternate	701			2 2	APC/XCB APC/XCB	650 650		result of its growth and subsidence of surrounding relief. Same as SA3A.	
114	SA3C	Alternate				2	APC/XCB	650	YES	Same as SA3A.	
	SA3D SA5A	Alternate Alternate	_			2 3	APC/XCB APC/XCB	300 850		Same as SA3A. Same as SA5C	
	SA5B	Alternate				3	APC/XCB	750		Same as SASC Same as SASC	
										Northeast Georgia Rise, oceanic plateau of mid-Cretaceous	
	SAEC	Brimory				2	ADC/YOD	500	VEO	to Paleocene age - fossil arc massif at a convergent	
114	SA5C SA5C-ALT	Primary	698			3	APC/XCB	500	TES	boundary of Malvinas plate and South America?	
114	SA5D	Alternate				3	APC/XCB	870	YES	Same as SA5C	
										Determine age, nature and subsidence history of Islas	
										Orcadas Rise. Interpret the influence of Islas Orcadas Rise, Meteor Rise and adjacent fracture zones on the oceanic	
	SA6A	Alternate	702			3	APC/XCB	750	YES	communication between Weddell Sea and South Atlantic.	
	SA6B SA6C	Alternate Alternate				3 3	APC/XCB APC/XCB	600 500	YES	Same as SA6A. Same as SA6A.	
114	SA6D	Alternate				3	APC/XCB	650	YES	Same as SA6A.	
114	SA6E	Alternate				3	APC/XCB	800	YES	Same as SA6A. Obtain sedimetary record of oceanic gateway (west of	
	C 4 7 4	Alternatio				2		050	VEC	Meteor Rise) between the South Atlantic and Southern	
	SA7A SA7B	Alternate Alternate				3 3	APC/XCB APC/XCB	850 750		Ocean Same as SA7A.	
114	SA7C	Alternate				3	APC/XCB	450	YES	Same as SA7A.	
	SA7D SA7E	Alternate Alternate				3 3	APC/XCB APC/XCB	350 560		Same as SA7A. Same as SA7A.	
114	SA8A	Alternate				3	APC/XCB	900	YES	Same as SA8C.	
114	SA8B	Alternate				3	APC/XCB	850	YES	Same as SA8C. Determine age, nature and subsidence history of Meteor	
										Rise. Interpret the influence of Islas Orcadas Rise, Meteor	
114	SA8C	Primary	704			3	APC/XCB	800	YES	Rise and adjacent fracture zones on the oceanic communication between Weddell Sea and South Atlantic.	
	SA8D	Alternate				3	APC/XCB	850		Same as SA8C.	

LEG F	RECRUISE NAME	SITE PRIORITY	SITE HOLE	SUCC ESS #	Holes	OPS	Depth	Logge d	Objective	SITE_COMMENT
114S	A8E	Primary Primary		3		APC/XCB APC/XCB	850 850	YES YES	Same as SA8C.	
114S	A8G	Primary		3		APC/XCB	850	YES	Same as SA8C.	
114S	A8H .	Added	703						Geochemical analyses and dating of basaltic rocks for	
									comparison with other oceanic hotspots and determine paleolatitudes. High resolution magnetostratigraphy,	
115M	IP-1	Primary-1		1		APC/RCB	220	NO	biostratigraphy and dissolution studies of the carbonate system.	
115M	IP-2	Primary-1		1		APC/RCB	300	YES	Same as MP-1	
115M		Primary-1 Added?	705 706	1		APC/RCB	330	YES	Same as MP-1	
115M	IP-3A	Alternate		1		APC/RCB	350	YES	Same as MP-1	
									High resolution magnetostratigraphy, biostratigraphy and dissolution studies of the carbonate system. Geochemical	
1150	ARB-1	Brimony 1		2		APC/XCB/RCB	330	YES	analyses and dating of basaltic rocks for comparison with other oceanic hotspots and determine paleolatitudes.	
115C	ARB-1A	Primary-1 Alternate		2		APC/XCB/RCB	450	YES	Same as CARB-1	
115C	ARB-1B	Added	707						High resolution magnetostratigraphy, biostratigraphy and	
		Primary-1 Alternate	709	2		APC/XCB APC/XCB	250 250	NO NO	dissolution studies of the carbonate system. Same as CARB-2	
115C	ARB-3	Primary-1	710	2		APC/XCB	250	NO	Same as CARB-2	
115C	ARB-4A	Primary-1 Alternate	708	2		APC/XCB APC/XCB	250 250	NO NO	Same as CARB-2 Same as CARB-2	
		Alternate Alternate	711	2		APC/XCB APC/XCB	250 250	NO NO	Same as CARB-2 Same as CARB-2	
									Record of climatically induced changes in carbonate	
		Alternatio	740			100/000			saturation levels as recorded in aragonite sediments; for	
115M 115M	ILD-2	Alternate Primary-2	716 714	2		APC/XCB APC/XCB	200 200	NO NO	comparison with Pleistocene aragonite cycles in Bahamas. Same as MLD-1	
115M 115C		Added	715 712	+						
115		Added	713							
									To calibrate regional seismic stratigraphy; to establish a	
11610		Primary-1	717	2		APC/XCB/RCB	775	YES	reference hole in sediment section; to measure physical and hydrological properties in an area without deformation.	
11610	D-1A	Alternate		2		APC/XCB/RCB	775	YES	Same as ID-1 To calibrate regional seismic stratigraphy; compare sediment	
									section with ID-1 to establish history of deformation; to measure physical and hydrological properties in an area with	
11610	0-2	Primary-1	719			APC/XCB/RCB	800	YES	gentle deformation. Measure physical properties, pressure, temperature and pore	
11610		Primary-1	718	2		APC/XCB/RCB	600	YES	fluid characteristics in an area of heat flow anomaly.	
116IE	D-6B	Alternate		2		APC/XCB/RCB	600	YES	Same as ID-6	
									Determine history of uplift and erosion of the Tibet/Himalayar Complex by investigating depositional rates of the distal	
117IN 117IN		Primary-1 Alternate	720	2		APC/XCB APC/XCB	500 500	YES YES	Indus Fan and intercalated pelagic sediments. Same as IN-1	
		Allemale		2		AI G/XOD	300	1113	Recover continuous and undisturbed Neogene pelagic	
1170		Primary-1	721	2		APC/XCB	425	YES	sequence deposited under the influence of monsoon-driven upwelling and eolian transport over Owen Ridge.	
117O 117O		Primary-1 Primary-1	722	2		APC/XCB APC/XCB	550 425	YES YES	Same as OR-1	
									Recover a continuous sequence of reflectors onlapping on the Owen Ridge to date the uplift history of the ridge and	
1170	P-4	Primary-1	731	1		RCB	1150	YES	relate the uplift to age of the Oman Basin. Recover basement.	
	11(-4	r minary-1	751	· · · ·		KOD	1130	1123	Recover continuous, high-resolution, undisturbed Plio-	
									Pleistocene sequence of organic-rich sediment deposited under the proximal monsoon-driven coastal upwelling on the	
117O 117O		Primary-1 Primary-2	723	2	-3	APC/XCB APC/XCB	700 340		Oman Margin. Same as OM-1	
117O 117O		Primary-2 Primary-1	724 725	2		APC/XCB APC/XCB	270 250		Same as OM-1 Same as OM-1	
				2			200		Recover shallow sediments overlying shallow basement	
117O 117O		Primary-1 Primary-2	726 727	2		APC/XCB/RCB APC/XCB	300	YES YES	(ophiolite thrusts). Obtain section of ophiolite series. Same as OM-1	
									Recover continuous and undisturbed late Neogene sequence	
1170	M-8	Primary-1	728	2		APC/XCB	340	YES	deposited on deeper part of margin under the proximal monsoon-driven coastal upwelling over Oman Margin.	
1170		Alternate		2		APC/XCB	400	YES	Same as OM-8 Recover sediment sequence deposited on the outer	
1170		Primary-1	729	1		RCB	340	YES	basement structure thought to be an ophiolite thrust.	
1170		Added	730						Determine petrology, alteration state and deformational fabric	
118S	WIRI	Primary-1	732	S	everal	RCB	500	YES	of mantle peridotite in a major fracture zone.	
118S	WIR II	Primary-2	733	S	everal	RCB	500	YES	Same as SWIR I Determine nature and deformational characteristics of	
1100	WIR III	Primary-3			-5	ХСВ	500 in basement	VEO	basement rocks across the floor of a major fracture zone. Same as SWIR I for deep hole.	
1105	TTUX III	n ninary=0		S	ame		JUBILIPER	150		
118S	WIR IV	Primary-4		a S	s SWIR I		200		Determine the nature and deformational characteristics of the basement in an active nodal basin.	1
									Determine the nature and deformational characteristics of the	
118S		Primary-5 Added ?	734	1			100+	YES	basement in a fossil nodal basin in the inactive fracture zone.	
118		Added ?	735						Obtain complete stratigraphic record from Oligocene to	
									Holocene. Date the major unconformity. Document tectonic	
119K	HP-1	Primary-1	736			APC/XCB/RCB	910	YES	and susidence hstory of Eocene to Holocene. Determine age and evolution of Kerguelen Island.	
									Obtain complete stratigraphic record from Eocene to Upper Cretaceous. Sample, date the major unconformity.	
									Determine age and nature of basement underlying plateau. Study tectonic and subsidence history from Late Cretaceous	
119K	HP-3	Primary-3	737			APC/RCB		YES	to Eocene. Obtain continuous Neogene and Paleogene stratigraphic	
									section from Southern Kerguelen Plateau. Determine nature and age of basement from SKP. Determine Paleogene and	
	KD CA	Drimon: 4	700				550	VEC	Mesozoic history of changing ocean conditions, rifting and	
119S	KP-6A	Primary-1	738	+		APC/RCB	550	TES	subsidence.	
1									Document preglacial and glacial history of East Antarctica; timing of glacial erosion; breakup and paleoenvironmental	
						APC/XCB	500	YES	history of continental margin, and ocean response.	
119P		Primary-1 Primary-1	740			APC/XCB	500	YES		
119P 119P 119P	B-2 B-3	Primary-1 Primary-1	740 741			APC/XCB APC/XCB	500 500	YES		
119P 119P	B-2 B-3 B-4 B-5	Primary-1				APC/XCB	500			

LEG	PRECRUISE NAME	SITE PRIORITY	SITE	HOLE	SUCC ESS	# Holes	OPS	Depth	Logge d	Objective	SITE_COMMENT
119 119	PB-8	Primary-1 Added ?	742	>			APC/XCB APC/XCB	500 500	YES YES		
119		Added ?	742				APC/XCB	500	YES		
										Determine nature of sedimentary units, shift of polar front, and evolution and tectonic history of the Southern Kerguelen	
119	SKP-6B	Alternate	744	l			APC/XCB/RCB	1000	YES	Plateau. Sample sediment ridge close to southeastern limit of plateau.	
										Document the paleoceanographic history of the SKP -	
119	SKP-8	Primary-2					APC/RCB		YES	initiation and development of Circumpolar and Antarctic Bottom Water circulation.	
119 119	SKP-8A	Primary-2 Added ?	745				APC/RCB		YES	Same as SKP-8	
										Recover basement from the northern region of the Kerguelen	
120	SKP-1	Primary-1	747	r			APC/XCB RCB	200 450 150	YES	Plateau.	
120	SKP-2	Primary-1					APC APC/XCB RCB	200 1100	YES	Obtain high-resolution Neogene and Paleogene stratigraphic section from the southern Kerguelen Plateau.	
	SKP-2C	F fillinal y=1	751				KOB	1100	TES	section nom the southern Reigueien Flateau.	
								150		Recover expanded section of Paleogene sediments	
	SKP-3	Primary-2	740			2	APC RCB	800	YES	reflecting earlier history of the southern Kerguelen Plateau.	
	SKP-3C SKP-3D		748								
120	SKP-4A	Primary-1	749			2	APC/XCB RCB	250 450	YES	Recover basement from the southern Kerguelen Plateau.	
	KHP-1	Primary-4				-		1400		Depends on Leg 119 KHP-1 program.	
120	KHP-3	Primary-3				2	APC/XCB RCB	250 1700	YES	Same as Leg 119 KHP-3	
										Determine age, sedimentary facies, paleodepth of dipping, truncated sedimentary sequence at Broken Ridge as a test of	
	BR-1	Primary-1	753				APC/XCB	450	YES	rifting mechanisms.	
121	BR-2	Primary-1	752	2			APC/XCB	450	YES	Same as BR-1 Recover sedimentary sequence (Neogene ooze and	
124	BR-3	Primary-1	754				APC/XCB	450	YES	lagoonal facies deposits) above unconformity. Determine age, facies, paleodepth of dipping and truncated units.	
										Determine age, facies, and paleodepth of dipping and	
121	BR-4	Primary-2	755	ō			RCB	450	YES	truncated units at Broken Ridge. Basalt geochemistry at position between Sties 253, 254.	
124	NER-5A	Primary-3	756				RCB	300	YES	Secondary objective is site at southern end of N-S paleoceanographic/climatic transect.	
	NER-5B (SNR-3)	Alternate	730				RCB	300	YES	Same as NER-5A	
										Basalt geochemistry between Sites 253 and 214, vertical changes in basement section. Northward motion curve from	
121	NER-2A (CNR-2)	Primary-1				2	APC/XCB/1NCB RCB	340 440	VES	paleomagnetic studies. Central site N-S paleoceanographic/climatic transect.	
							APC/XCB/1NCB	454			
121	NER-2B (CNR-3)	Alternate				2	RCB APC/XCB/1NCB	554 393	YES	Same as NER-2A	
121	NER-2C (CNR-5)	Alternate	757	·		2	RCB	493	YES	Same as NER-2A Expanded Neogene section at north end of N-S	
										paleoceanographic/climatic transect. Date presumed mid-	
121	NER-1A (NNER-9)	Primary-1					APC/XCB 1NCB	425	YES	Eocene unconformity. Basalt geochemistry at N end of Ridge. Sample expanded	
121	NER-1B (NNER-10)	Priman/-1					Wash RCB	240 335	YES	Paleogene-Cretaceous section at N end of N-S paleoceanographic/climatic transect.	
121	NER-1C	Added	758				Wash KCB	333	TES		
	EP-10A EP-10A''		759								
122	EP-9E		761								
	EP-9F EP-12P		764								
	EP-7V		763								
	AAP-1B EP-2A		765								
	SS-1 SS-2	Alternate Alternate	768	2			APC/XCB/RCB APC/XCB/RCB	1300 1200		Same as SS-3 Same as SS-3	
124	55-2	Alternate	700				AI G/XGB/KGB	1200	123	Nature and age of oceanic basement. Nature and age of	
124	SS-3	Primary-1					APC/XCB/RCB	1350	YES	regional seismic horizons. Paleoenvironment and sedimentation in restricted ocean basin.	
124	SS-4	Primary-2					APC/XCB/RCB	1200	YES	Nature and age of a crustal slab. Neogene sediments and paleoenvironment in a restricted	
	SS-5 (Sulu-4)	Primary-2	769				APC/XCB	400	YES	ocean basin.	
124	SS-5A	added	771							Nature and age of oceanic basement. Nature and age of	
124	CS-1	Primary-1	767	,			APC/RCB	1050	YES	regional seismic horizons. Paleoenvironment and sedimentation in restricted ocean basin.	
	CS-1A	Added	767						. 20		
124	BANDA-2	Primary-1					APC/XCB/RCB	1050	YES	Stratigraphic history and age of north Banda Basin. Tectonic history of Banda Sea and regional collisions.	
124E	ENG-1		773								
124E	ENG-1A ENG-1B		774	l I							
	ENG-1C ENG-2		775								
124E	ENG-3		777								
124E	ENG-4							700 +			
125	MAR3A	Primary-1	780)			APC/XCB/RCB	refusal	YES	Penetrate the neck of a rising serpentinite diapir.	
			_					700 +		Penetrate through flank flows of sedimentary serpentinite into	
	MAR3B MAR3B	Primary-1 Primary-1	778				APC/XCB/RCB	refusal	YES	underlying sediments and crystalline basement if possible.	
	MAR3C	,	781					400			
125	BON-1	Alternate				2	APC/XCB RCB	400 1050	YES	Same as BON-1A	
								300		Nature and age of syn-rift and pre-rift sedimentation and volcanism. History of vertical motion. Nature of fluids and	
125	BON-1A	Primary-1				2	APC/XCB RCB	1050	YES	mineralization. Nature of arc volcanism and sedimentation. History of	
125	BON-2	Primary-1					RCB	1200	YES	vertical motion.	
										Determine history of vertical motion, sedimentation,	
125	BON-3	Primary-2					RCB	900	YES	variations in intensity and chemistry of arc volcanism and the paleo Kuroshio current. Nature of frontal arc basement high.	
125	5-NO	r minary-z					NUD	300	IES	Determine history of vertical motion, sedimentation,	<u> </u>
										variations in intensity and chemistry of arc volcanism. Nature and age of forearc basin basement and overlying	
125	BON-4	Primary-1		ļ			RCB	900	YES	Determine history of vertical motion, sedimentation,	
										variations in intensity and chemistry of arc volcanism. Style	
125	BON-5A	Primary-2				2	APC/XCB RCB	200 925	YES	of microstructural deformation and amount of large-scale forearc rotation/translation.	
										Determine history of vertical motion, sedimentation, variations in intensity and chemistry of arc volcanism. Nature	
										and age of forearc basin basement. Style of microstructural	
				1						deformation and amount of large-scale forearc	
125	BON-5B	Primary-1					RCB	800	YES	rotation/translation.	
	BON-5B	Primary-1 Alternate				2		800 500 1100			

									1		
			0.75		SUCC		0.50		Logge d		
		SITE PRIORITY Primary-1	5ITE 785		ESS	# Holes	RCB	Depth 750	d YES	Objective Same as BON-5B	SITE_COMMENT
		Primary-1	782				RCB	550		Same as BON-5B	
125	BON-6C	Primary-2	786				RCB	200	YES	Same as BON-5B Age and mechansm of serpentinite emplacement. Nature of	
125	BON-7	Primary-1	783			2	APC/XCB RCB	refusal 500	YES	fluids. Nature of lower crustal rocks emplaced with the serpentinite.	
123	DOIN-7	T fifted y=1	100			2	AF G/XOB ROB		1125	Age and mechansm of serpentinite emplacement. Nature of	
125	BON-7	Primary-1	784			2	APC/XCB RCB	refusal 500	YES	fluids. Nature of lower crustal rocks emplaced with the serpentinite.	
						-		700 +			
126	MAR3A	Primary-1					APC/XCB/RCB	refusal	YES	Penetrate the neck of a rising serpentinite diapir.	
100	MADOD	Drimon (1						700 +	VEC	Penetrate through flank flows of sedimentary serpentinite into	
		Primary-1 Added					APC/XCB/RCB	refusal	YES	underlying sediments and crystalline basement if possible.	
		Alternate				2		400 1050	YES	Same as DON 44	
120	DOIN-1	Alternate				2	APC/XCB RCB		TES	Same as BON-1A Nature and age of syn-rift and pre-rift sedimentation and	
126	BON-1A	Primary-1	790			2	APC/XCB RCB	300 1050	YES	volcanism. History of vertical motion. Nature of fluids and mineralization.	
			788	6		2				Nature of arc volcanism and sedimentation. History of	
126	BON-2	Primary-1	789				RCB	1200	YES	vertical motion.	
										Determine history of vertical motion, sedimentation,	
126	BON-3	Primary-2					RCB	900	YES	variations in intensity and chemistry of arc volcanism and the paleo Kuroshio current. Nature of frontal arc basement high.	
										Determine history of vertical motion, sedimentation, variations in intensity and chemistry of arc volcanism. Nature	
										and age of forearc basin basement and overlying	
126	BON-4	Primary-1	792				RCB	900	YES	unconformity. Determine history of vertical motion, sedimentation,	
										variations in intensity and chemistry of arc volcanism. Style	
126	BON-5A	Primary-2				2	APC/XCB RCB	200 925	YES	of microstructural deformation and amount of large-scale forearc rotation/translation.	
120						-	LA CATOD TOD		. 25	Determine history of vertical motion, sedimentation,	
										variations in intensity and chemistry of arc volcanism. Nature and age of forearc basin basement. Style of microstructural	
		Drimor : 1					DOD	000	VEC	deformation and amount of large-scale forearc	
	BON-5B BON-5C	Primary-1	787				RCB	800	YES	rotation/translation.	
		Allerert				2		500	VEC	Same as BON 50	
		Alternate Primary-1				2	APC/XCB RCB RCB	1100 750		Same as BON-5B Same as BON-5B	
126	BON-6B	Primary-1					RCB	550	YES	Same as BON-5B	
126	BON-6C	Primary-2					RCB	200	YES	Same as BON-5B Age and mechansm of serpentinite emplacement. Nature of	
								refusal		fluids. Nature of lower crustal rocks emplaced with the	
126		Primary-1 Added	793			2	APC/XCB RCB	500	YES	serpentinite.	
								300			
							APC/XCB RCB	620 720		Nature and age of basement rocks. Style and evolution of	
127	J1b-1	Primary-1				4	RCB RCB	ADAP	YES	sedimentation at Yamato Basin.	
										Penetrate remnant spreading ridge. Nature and age of basement rocks. Style of multiple rifting. Style and evolution	
127	J1d-1	Primary-1					APC/XCB/RCB	680	YES	of sedimentation at Japan Basin. Penetrate Okushiri Ridge. Timing of uplift and	
										compressional tectonics. Nature and age of the uplifted	
127	J3b-1	Primary-1					APC/XCB/RCB	610	YES	basement. Paleoceanography.	
										Nature and age of basement rocks Style of multiple rifting.	
127	J1e-1	Primary-1					APC/XCB/RCB	720 300	YES	Style and evolution of sedimentation of Yamato Basin.	
								710			
127	J1b-2	Alternate				4	APC/XCB RCB RCB RCB	710 ADAP	YES	Same as J1b-1	
								300 590			
							APC/XCB RCB	590			
		Alternate				4	RCB RCB APC/XCB/RCB	ADAP 970	YES	Same as J1b-1 Same as J3b-1	
		Alternate Alternate					APC/XCB/KCB	250	YES NO	Paleoceanography	
127	120	Alternate				2	APC/XCB RCB	246 346	YES	Same as J3b-1	
121	330	Alternate				2	AFC/ACB KCB	240 340	TES	Same as JSD-1	
127	J1d-2	Alternate				2	APC/XCB RCB	760 810	YES	Same as J1d-1	
								300 580			
127	.l1a	Alternate				4	APC/XCB RCB RCB RCB	680 ADAP	YES	Same as J1b-1	
121	010	Alternate				-	NOD NOD				
							APC/XCB RCB	300 720 820			
127	J1c	Primary-2				4	RCB RCB	ADAP		Same as J1b-1	
							APC/XCB APC	refusal		Penetrate Oki Ridge. Neogene paleoceanographic history.	
127	JS2	Primary-1				3	APC		YES	Bacterial activity. Penetrate Kita-Yamato Trough. Metallogeny. Style and	
								600		nature of sedimentation in failed rift. Paleoceanographic	
127	J2a-1	Primary-1				2	APC/XCB RCB	1430 600	YES	history.	
127	J2a-2	Alternate				2	APC/XCB RCB	980	YES	Same as J2a-1.	
								300 620			
								720		Nature and age of basement rocks. Style and evolution of	
128	J1b-1	Primary-1				4	RCB RCB	ADAP	YES	sedimentation at Yamato Basin. Penetrate remnant spreading ridge. Nature and age of	
	14 - 4	Drimor : 1						696	VEC	basement rocks. Style of multiple rifting. Style and evolution	
128	J1d-1	Primary-1					APC/XCB/RCB	680	YES	of sedimentation at Japan Basin. Penetrate Okushiri Ridge. Timing of uplift and	
100	J3b-1	Primary 1						610	YES	compressional tectonics. Nature and age of the uplifted	
128	330-1	Primary-1					APC/XCB/RCB	010	IES	basement. Paleoceanography.	
128	J1e-1	Primary-1					APC/XCB/RCB	720	YES	Nature and age of basement rocks Style of multiple rifting. Style and evolution of sedimentation of Yamato Basin.	
120		ay=1					A GRODINOD	300	110	evice and evolution or sedimentation of 1 dilidit DdSIII.	
							APC/XCB RCB	710 710			
128	J1b-2	Alternate				4	RCB RCB	ADAP	YES	Same as J1b-1	
								300 590			
	145.0	Alternet					APC/XCB RCB	590	VEC	Come en 14h 4	
		Alternate Alternate				4	RCB RCB APC/XCB/RCB	ADAP 970	YES YES	Same as J1b-1 Same as J3b-1	
		Alternate					APC/XCB	250	NO	Paleoceanography	
	130	Alternate				2	APC/XCB RCB	246 346	YES	Same as J3b-1	
128											
		Alternate				2	APC/XCB RCB	700 01-	VEC	Same as J1d-1	

LEG	PRECRUISE NAME	SITE PRIORITY	SITE	HOLE	SUCC ESS	# Holes	OPS	Depth	Logge d	Objective	SITE_COMMENT
								300 580			
128	11a	Alternate				4	APC/XCB RCB RCB RCB	680 ADAP	YES	Same as J1b-1	
								300 720			
128	J1c	Primary-2				4	APC/XCB RCB RCB RCB	820 ADAP		Same as J1b-1	
							APC/XCB APC	refusal		Penetrate Oki Ridge. Neogene paleoceanographic history.	
128	JS2	Primary-1				3	APC	120 80	YES	Bacterial activity. Penetrate Kita-Yamato Trough. Metallogeny. Style and	
128	J2a-1	Primary-1				2	APC/XCB RCB	600 1430	YES	nature of sedimentation in failed rift. Paleoceanographic history.	
	J2a-2	Alternate				2	APC/XCB RCB	600 980	YES	Same as J2a-1.	
										Age calibration of Late Jurassic magnetic anomalies. Characterization of Jurassic sediments and	
129	PIG-1	Primary-1					RCB	445	YES	paleoenvironment of superocean. Geochemical reference and physical properties of sediment and crust.	
	PIG-2	Alternate					RCB	445	YES	Same as PIG-1 Age calibration and characterization of Jurassic Quiet Zone.	
										Characterization of Jurassic sediments and paleoenvironment of superocean. Geochemical reference	
129	PIG-3	Primary-1					RCB	751	YES	and physical properties of sediment and crust. Age calibration and characterization of original Pacific	
										microplate. Characterization of Jurassic sediments and paleoenvironment of superocean. Geochemical reference	
129	PIG-4	Primary-1					RCB	471	YES	and physical properties of sediment and crust. Characterization of middle Cretaceous volcanic complex.	
129	EMB-1	Alternate					RCB	600	YES	Same as PIG-1, middle Jurassic. 4th site in Neogene transect to obtain high-resolution	
130	OJP-1	Primary-1				3	APC APC APC/XCB	250 250 650	YES	sediment record for dissolution and biostratigraphic studies of Neogene and Quaternary carbonate system.	
							APC APC	250 250			
130	OJP-1a	Alternate				3	APC/XCB	650	YES	Same as OJP-1	
130	OJP-2	Primary-1				3	APC APC APC/XCB	250 250 500	YES	3rd site	
				1			APC APC	250 250			
130	OJP-3	Primary-1				3	APC	50 230	YES	2nd site	
130	OJP-3a	Alternate				3	APC APC APC	250 250 50	YES	2nd site	
100	501 50	Titemate				0	1110	250 250	120	1st site. Recover Paleogene and Cretaceous sediments and	
130	OJP-4	Primary-1				3	APC APC APC/XCB/RCB	50/500/79 0	YES	basement rock to determine pre-Neogene paleoceanography and origin of the OJP.	
	OJP-4a	Primary-2				1	Wash RCB	250 260	NO	Determine nature and composition of 'basement' high at this location.	
130	551 -4a	T Timdry-2					Wash KOD	250 250	NO		
130	OJP-4b	Alternate				3	APC APC APC/XCB/RCB	50/500/79 0	YES	Same as OJP-4	
100	501 45	Titemate				0	NI ONODINOD	0	120	Neogene transect to obtain a high-resolution sediment record for dissolution and biostratigraphic studies of Neogene and	
								220/600/1		Quaternary carbonate system. Recover sediments and basement rock to determine pre-Neogene paleoceanography	
130	OJP-5	Primary-1					APC/XCB/RCB	400 220/600/1	YES	and origin of the OJP.	
130	OJP-5a	Alternate					APC/XCB/RCB	400	YES	Same as OJP-5	
130	OHP-6	Alternate					APC APC APC	250 250 50	VES	Same as OJP-3	
	NKT-1	Primary-1					APC/XCB/NCB	refusal- 950?		Reference measurements of physical properties and stratigraphy for comparison to NKT-2.	
131	NK1-1	Fillindiy-1					AFC/ACB/INCB	refusal	TES	Characterize section. Determine sequence of deformation	
131	NKT-2	Primary-1				4	APC/XCB RCB RCB RCB			features. Correlate deformational styles to sedimentary facies.	
131	NI(1-2	T Timery-T				4		refusal 1100	TLO		
131	NKT-2A	Alternate				4	APC/XCB RCB RCB RCB	1100 1500	VES	Same as NKT-2	
131	111-27	Alternate				4	KOD KOD	refusal	TLO		
131	NKT-10	Alternate				4	APC/XCB RCB RCB RCB	850 850 1150	VES	Same as NKT-2	
	NKT-10					4	APC/XCB	refusal- 900?		Same as NKT-2	
131	1111-0	Primary-3				1	NI OINOD	5001	YES	ENG - Deploy and test HRB. Test new bare rock spudding techniques. Evaluate Phase II 4500m DCS. SCI -	
132	ENG-5	Primary-1				2	drill/DCS	?/150	NO	Characteristics of very young pillow basalts.	
										ENG - test new reentry cone. Drill-in BHA/back-off concept. DCS evaluation. SCI - Paleoceanographic studies of organic	
	ENG-6 ENG-6A	Primary-1 Alternate				2	jet-in/DCS jet-in/DCS	?/150 ?/150	NO NO	-carbon-rich sedments in anceint Pacific Ocean. Same as ENG-6	
132		Alendle				۷		1/130	NU	ENG - deploy and test HRB. Evaluation of bare rock spudding techniques. SCI - Characterize shallow-water	
120	ENG-7	Primary-1				2	drill/DCS	?/150	NO	limestones, dissolution/diagenetic effects, surface phosphatization.	
132	ENG-7A	Primary-2				2	drill/DCS	?/150	NO	Same as ENG-7.	
132	ENG-7B	Primary-2				2	drill/DCS	?/150	NO	Same as ENG-7. Determine age and facies of proximal portions in front of present day Great Barrier Reef. Determine relationship	
										between sea level and depositional facies. Determine timing	
100		Primory 4					ADC/YCD	400	VEO	and factors controlling initiation of reef growth on central GBR. Understand factors controlling transition from prograditive to according to accord	
133	NEA-1 NEA-2	Primary-1 Primary-1					APC/XCB APC/XCB	400 400	YES YES	progradative to aggradative depositional geometries. Same as NEA-1 except central portions in front of GBR.	
133	NEA-3	Primary-1					APC/XCB	400	YES	Same as NEA-1 except distal portions in front of GBR. Determine age and facies of a lower slope fan in front of	
										present day GBR. Compare with NEA-1-3, to determine sea- level signature preserved in lower slope facies. Examine fan	
	NEA-4	Primary-1					APC/XCB	400		processes on lower slope in mixed siliciclastic/carbonate depositional system.	
133	NEA-4alt	Alternate					APC/XCB	400	YES	Age and facies of basinal sediments. Derive sea-level	
							APC	100		signature in deep-basin setting, relate to NEA-1-4. High- resolution paleoceanographic record reflecting Late	
133	NEA-5	Primary-1				2	APC/XCB/RCB	400/ 1011	YES	Cenozoic climatic variation. Determine age and facies of upper slope deposits adjacent	
										to plateau-margin reefal buildup. Determine paleoceanographic, paleoclimatic signal. Understand slope	
	NEA-6	Primary-1					APC/XCB/RCB	266/390	YES	processes in exclusively carbonate depositional system. Determine composition, age of basement.	
133	NEA-8	Primary-1					APC/XCB	400	YES	Same as NEA-6.	

Image Image <th< th=""><th></th><th>I</th><th></th><th></th><th>T</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		I			T						
Non-2 Non-2 <th< td=""><td>LEG PRE</td><td>CRUISE NAME</td><td>SITE PRIORITY SI</td><td>TE HOLE</td><td>ESS</td><td># Holes</td><td>OPS</td><td>Depth</td><td>d</td><td>Objective Determine age and facies of periplatform and fore-reef</td><td>SITE_COMMENT</td></th<>	LEG PRE	CRUISE NAME	SITE PRIORITY SI	TE HOLE	ESS	# Holes	OPS	Depth	d	Objective Determine age and facies of periplatform and fore-reef	SITE_COMMENT
Note of the sector Note of	133NEA	-9A	Primary-2				APC/XCB/RCB	265 / 500	YES		
Name Name No No <th< td=""><td>133NEA-</td><td>-10A/1</td><td>Primary-1</td><td></td><td></td><td></td><td>APC/XCB/RCB</td><td>200 / 300</td><td>YES</td><td>Same as NEA-9A</td><td></td></th<>	133NEA-	-10A/1	Primary-1				APC/XCB/RCB	200 / 300	YES	Same as NEA-9A	
No. 1 No. 2 No. 2 <th< td=""><td>133NEA-</td><td>-10A/2</td><td>Primary-1</td><td></td><td></td><td></td><td>APC/XCB/RCB</td><td>1207500</td><td>TES</td><td>Determine age and facies of lower slope sequence adjacent</td><td></td></th<>	133NEA-	-10A/2	Primary-1				APC/XCB/RCB	1207500	TES	Determine age and facies of lower slope sequence adjacent	
Dialk 1 Party <								200			
Number Number<	133NEA	-11	Primary-1			2			YES		
	10011271					-					
Processed Processed <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>highstand. Determine nature of 2 phases of carbonate</td><td></td></t<>										highstand. Determine nature of 2 phases of carbonate	
No. 2.1.1 Protect											
	133NEA	-13	Primary-1				APC/XCB/RCB	110 / 250	NO	nature of sequence overlying the carbonate platforms.	
1338-14 Network Network Network Network Network Network Network Network Network 1 Network Network </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>carbonate platform accretion. Determine age, nature of</td> <td></td>										carbonate platform accretion. Determine age, nature of	
IND C2 Print I Print Pr	133NEA	-14	Primary-1			2			YES		
Imperso Prevane 1 P	134DEZ-	-1	Primary-1				APC/XCB	300	YES		
13 13 14 14 1 14 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Determine age, lithologies and deformation of forearc.</td> <td></td>										Determine age, lithologies and deformation of forearc.	
	134DEZ-	-2	Primary-1			2	wash/RCB	500/800	YES	subducted NDR.	
Subscription Processes	134DEZ-	-4	Primary-1			2			YES	forearc rocks in collision zone of Bougainville Guyot.	
19406-2 Prenzy-1 I PCP											
13.46.4 Paray 1 2 Add 2 Sec 0 Paray 2 2 Add 2 13.46.4 Paray 2 2 PC CRC No Sec 0 Sec	134DEZ-	-5	Primary-1						YES	colliding guyot.	
Phany 1 Phany 1 Phany 1 Phany 1 Phany 2 Phany 2 <t< td=""><td>134IAB-</td><td>1</td><td>Primary-1</td><td></td><td></td><td>2</td><td></td><td></td><td>YES</td><td>forming recent intra-arc basin.</td><td></td></t<>	134IAB-	1	Primary-1			2			YES	forming recent intra-arc basin.	
14/0-2 Primp1 2 wath/CB 2000 Primp2 Primp2 Primp2 12/0-1 Primp2 2 APC BC 70								refusal		stratigraphic section that straddles chronologically the arc-	
India 1 Promy Promo< Promy Promy	134IAB-:	2	Primary-1			2			YES		
1 So C-1 Primp - C P PC P											
SS.C1A Average APC 08 97 YES Special LCT		.								character of propagator with precise assessment of time	
13E 0-2 Parage	135LG-1	1	Primary-2			2	APC RCB		YES	hiatus between it and pre-existing backarc crust.	
	135LG-1	1A .	Alternate			2	APC RCB		YES	Same as LG-1 Sample crust formed in first 0.5mv of crustal dilation Nature	
138.6-2 Prime-1 3 6.8 900 YE presulting controls, meaning controls, anomalies and prime sequence security, anomalies of parts and prime sequence security, anomalies of parts anomalies anomali										and age of basal sediment to identify magnetic anomaly.	
134.0-3 Premp-1 Premp-1 <t< td=""><td>135LG-2</td><td>2</td><td>Primary-1</td><td></td><td></td><td>3</td><td></td><td></td><td>YES</td><td>spreading center.</td><td></td></t<>	135LG-2	2	Primary-1			3			YES	spreading center.	
No.3. Promp Promp< P											
Isis Grad. Privacy Isis Grad	4051.0.0		Driverent			~			VEO	assess uplift and subsidence history. Correlation of basin	
134.G-GA Prmay-1 2 2 PCXGB RC 100 VES utility difference of Production for Allowing and a convert in the start of the start of Production for Allowing and a convert in the start of Allowing and a	135LG-3	3	Primary-1			2	APC/XCB RCB		YES	High recovery to characterize basement, assign age of	
Jake-7 Prmay-1 Prmay-2 Processes Prmay-2 Processes Prmay-2 Processes Prmay-2	135LG-6	6A	Primary-1			2	APC/XCB RCB		YES		
135.0-7 Presy-1 2 A PC RC8 150 YE8 Sema a LC2 135.0-9 Presy-2 2 A PC XC8 RC8 Sema a LC2 and LC7. 136.0-9A Presy-2 2 A PC XC8 RC8 Sema a LC2 and LC7. 136.0-10A Presy-2 2 A PC XC8 RC8 Sema a LC2 and LC7. 139.0-10A Presy-2 2 A PC XC8 RC8 Sema a LC2 and LC7. 139.0-10A Presy-2 2 A PC XC8 RC8 Sema a LC2 and LC7. 139.0-10A Presy-2 2 A PC XC8 RC8 Sema a LC2 and LC7. 139.00-10A Presy-2 3 REMERIA Sema a LC2 and LC7. 139.00-10A Presy-1 3 REMERIA Sema a LC2 and LC7. 139.00-10A Presy-1 3 REMERIA Sema a LC2 and LC7. 139.00-10A Presy-1 3 REMERIA Sema a LC2 and LC7. 139.00-10A Presy-1 3 REMERIA Sema a LC2 and LC7. 139.00-10A Presy		-								Assess nature and extent of hydrothermal activity,	
136.0-9 Pinay-2 2 APCX08 R08 500 YES Same a L0-2 and L0-7. 136.0-9A Pinay-1 3 APCX08 R08 500 YES Same a L0-2 and L0-7. 136.0-10 Pinay-1 3 APCX08 R08 500 YES Same a L0-2 and L0-7. 136.0-10A Pinay-2 3 APCX08 R08 500 YES Same a L0-2 and L0-7. 136.0-10A Pinay-2 4 2 APCX08 R08 500 YES Same a L0-2 and L0-7. 13600-10 Pinay-2 4 2 APCX08 R08 500 YES Same a L0-2 and L0-7. 13600-10 Pinay-1 5 APCX08 R08 70 YES Same a L0-2 and L0-7. 13600-10 Pinay-1 5 APC WC9 to	135LG-7	7	Primary-1			2	APC RCB	150	YES		
136.Ce.04. Pmmy2 2 APC/CB 80 VES 80me at LG2 and LG7. 136.Ce.10A Pmmy2 A APC/CB 800 VES 80me at LG2 and LG7. 136.Ce.10A Pmmy2 A APC/CB 800 VES 80me at LG2 and LG7. 136.0e.10A Pmmy2 A APC/CB 800 VES 80me at LG2 and LG7. 136.0e.10A Pmmy1 A A APC/CB 800 VES 80me at LG2 and LG7. 136.0e.10A Pmmy1 A A APC/CB VES 80me at LG2 and LG7. 136.0e.02A Pmmy1 A A APC/MCB VES 80me at LG2 and LG7. 138.0e.02A Pmmy1 A A APC/MCB VES 80me at LG2 and LG7. 138.0e.02A Pmmy1 A APC/MCP bit VES 80me at LG2 and LG7. 138.0e.02A Pmmy1 A APC/MCP bit VES 80me at LG2 and LG7. 138.0e.02A Pmmy1 A APC/MCP bit VES 80me at LG2 and LG7. 138.0e.02A Pmmy1 A APC/MCP bit	135LG-9	9	Primary-2			2	APC/XCB RCB	350	YES	Same as LG-2 and LG-7.	
APC/X2B APC/X2B 100 X0B 100 X0B <t< td=""><td>135LG-9</td><td>9A</td><td>Primary-2</td><td></td><td></td><td>2</td><td>APC/XCB RCB</td><td></td><td>YES</td><td>Same as LG-2 and LG-7.</td><td></td></t<>	135LG-9	9A	Primary-2			2	APC/XCB RCB		YES	Same as LG-2 and LG-7.	
136/C-10 Premay-1 Image: state st								100			
133.G-10A Primary- A APCXCB 150 Same as LG-2 and LG-7. 133.G-10A Primary Image I	135LG-1	10	Primary-1			3		300	YES	Same as LG-2 and LG-7.	
Jacobs-1 Planay 2 APCXCB RG 340 YEs 13203-1 Pinay-2 2 APCXCB RG 340 YEs APCXCP Company AP							APC/XCB RCB				
13/00N-1 Primary 2 APCXCB RCB 3/0 VES 13/504B Primary 3 Deseminit VES 13/8WE0-3 Primary-1 3 Deseminit YES 13/8WE0-4 Primary-1 3 Deseminit YES 13/8WE0-5 Primary-1 3 Deseminit YES 13/8WE0-6 Primary-1 3 Deseminit YES 13/8WE0-6 Primary-1 3 Deseminit YES 13/8WE0-6 Primary-1 3 Deseminit YES 13/8WE0-7 Primary-1 3 Deseminit YES 13/8WE0-8 Primary-1 3 Deseminit YES 13/8WE0-9 Primary-1 3 Deseminit YES 13/8WE0-6 Primary-1 2 Deseminit YES 13/8EE0-1 Primary-1 2 Deseminit YES 13/8EE0-2 Primary-1 2 Deseminit YES 13/8EE0-3 Primary-1 2 Deseminit YES 13/8EE0-4 Primary-1 2 Deseminit YES 13/8EE0-5 Primary-1 2 Deseminit YES 13/8EE0-4 Primary-1	135LG-1	10A	Primary-2			3	RCB		YES	Same as LG-2 and LG-7.	
137504B Primary A Immedial ening YES 138WE0-2 Primary-2 A APC WXCP to Basemant 20 YES 138WE0-3 Primary-1 A Basemant 20 YES 138WE0-4 Primary-1 A Basemant 312 YES 138WE0-6 Primary-1 A Basemant 312 YES 138WE0-7 Primary-1 APC WXCP to APC WXCP to Basemant 312 NO 138WE0-6 Primary-1 APC WXCP to Basemant 312 NO 138WE0-7 Primary-1 APC WXCP to Basemant 312 NO 138EE0-1 Primary-1 APC WXCP to Basemant 312 NO 138EE0-2 Primary-1 2 APC WXCP to Basemant 312 NO 138EE0-3 Primary-1 2 APC WXCP to Basemant 212 YES 138EE0-4 Primary-1 2 Basemant 114 YES 138EE0-4 Primary-1	136OSN	V-1	Primary			2	APC/XCB RCB	340	YES		
13WE0-2 Primay-2 3 basement 27 YES 13WE0-3 Primay-1 3 APC WXCP to basement 120 YES 13WE0-6 Primay-1 3 basement 120 YES 13WE0-6 Primay-1 3 basement 90 YES 13WE0-6 Primay-1 3 basement 90 YES 13WE0-6 Primay-1 3 basement 90 YES 13WE0-7 Primay-1 3 basement 66 YES 13WE0-7 Primay-1 2 APC wXCP to basement 28 YES 13WE0-7 Primay-1 2 APC wXCP to basement 28 YES 13WE0-7 Primay-1 2 APC wXCP to basement 28 YES 13WE0-8 Primay-1 2 basement to basement 11 YES 13WE0-4 Primay-1 2 basement to basement to 28 YES 28 13WE0-4 Primay-2 2 basement to 47 YES 28 13WE0-4 Primay-2 2	137504E	В	Primary						YES		
138/VEG-3 Primay-1 3 basement 120 YES 138/VEG-4 Primay-1 3 basement 312 YES 138/VEG-6 Primay-1 3 basement 312 YES 138/VEG-6 Primay-1 3 basement 312 NO 138/VEG-6 Primay-1 3 basement 312 NO 138/VEG-6 Primay-1 3 basement 312 NO 138/VEG-7 Primay-1 3 basement 66 YES 138/EG-3 Primay-1 2 basement 283 YES 138/EG-3 Primay-1 2 basement 271 YES 138/EG-4 Primay-1 2 basement 283 YES 138/EG-5 Primay-1 2 basement 111 YES 138/EG-6 Primay-1 2 basement 212 YES 138/EG-6 Primay-1 2 basement 212 YES 138/EG-6 Primay-1 RCB 300-400 YES <	138WEC	Q-2	Primary-2			3		27	YES		
Jawe G-4 Primary-1 APC w/CP to APC w/CP to AP	138WEC	7-3	Primany-1			3		120	VES		
Jawe Co-5 Primary-1 3 APC wXCP to APC wXCP to APC wXCP to Jawement 93 YES 130W EO-7 Primary-1 3 basement Jawement 65 YES 130W EO-7 Primary-1 2 basement Jawement 65 YES 130W EO-7 Primary-1 2 basement Jawement 65 YES 130W EO-3 Primary-1 2 basement Jawement 71 YES 130W EO-4 Primary-1 2 basement Jawement 71 YES 130W EO-3 Primary-1 2 basement Jawement 71 YES 130W EO-4 Primary-1 2 basement Jawement 71 YES 130W EO-3 Primary-2 2 basement Jawement 71 YES 130W EO-4 Primary-1 2 basement Jawewent 71 YES 130W EO-3 Primary-2 2 basement Jawewent 71 YES 130W EO-4 Primary-1 2 basement Jawewent 71 YES							APC w/XCP to				
ISBNE-C-6 Primay-1 Solution APC wXCP to APC wXCP to ISBNE-C-7 Primay-1 Solution 138WEQ-7 Primay-1 3 APC wXCP to APC wXCP to ISBNE-C-1 Primay-1 2 APC wXCP to ISBNE-C-2 Primay-2 2 ISBNE-C-2 Primay-2 ISBNE-C-2 Primay-1 ISBNE-C-2 Primay-1 ISBNE-C-2	138WEC						APC w/XCP to	312			
138/WEQ-6 Primay-1 A a basement 312 NO 138/WEQ-7 Primay-1 3 basement 65 YES 138/EG-1 Primay-1 2 basement 65 YES 138/EG-2 Primay-1 2 basement 65 YES 138/EG-2 Primay-1 2 basement 711 YES 138/EG-3 Primay-1 2 basement 671 YES 138/EG-4 Primay-1 2 basement 111 YES 138/EG-5 Primay-2 2 basement 111 YES 138/EG-5 Primay-1 2 basement 12 YES 138/EG-5 Primay-1 8 RCB 300-400 YES 140504B Primay-1 8 RCB 300-400 YES 1410Fes 8 RCB 1504/C YES Imagement 1415C-1 Primay-1 3 washPCB 1504/C YES <	138WEG	G-5	Primary-1			3		93	YES		
138/UEQ-7 Primary-1 3 basement 65 YEs 138/EEQ-1 Primary-1 2 basement 283 YEs 138/EEQ-2 Primary-1 2 basement 271 YEs 138/EEQ-3 Primary-1 2 basement 295 YEs 138/EEQ-3 Primary-1 2 basement 295 YEs 138/EEQ-4 Primary-1 2 basement 191 YEs 138/EEQ-5 Primary-2 2 basement 191 YEs 138/EEQ-5 Primary-1 2 basement 191 YEs 138/EQ-4 Primary-1 2 basement 191 YEs 138/EQ-4 Primary-1 2 basement 191 YEs 138/EQ-4 Primary-1 RCB 300-400 YES 1405045 Primary-1 3 wesh/PCS 150/4C 1415C-4 Primary-1 3 wesh/PCS 150/4C 141SC-5	138WEC	Q-6	Primary-1			3	basement	312	NO		
138EC0-1 Primary-1 2 basement 283 YES 138EC0-2 Primary-1 2 basement 271 YES 138EC0-3 Primary-1 2 basement 295 YES 138EC0-4 Primary-1 2 basement 295 YES 138EC0-4 Primary-1 2 basement 411 YES 138EC0-4 Primary-1 2 basement 411 YES 138EC0-4 Primary-1 2 basement 181 YES 138EC0-5 Primary-1 2 basement 212 YES 138EC0-4 Primary-1 2 basement 212 YES 138EC0-5 Primary-1 2 basement 212 YES 140fess Deep Affect WCP to washPCS 150/4C YES 141SC-1 Primary-1 3 washPCS 150/4C YES 141SC-2 Primary-1 3 washPCS 150/4C YE	138WEC	Q-7	Primary-1			3	basement	65	YES		
APC WXCP to APC WXCP to 138/EEQ-2 Primary-1 2 basement 271 YES 138/EEQ-3 Primary-1 2 basement 295 YES 138/EEQ-4 Primary-1 2 basement 295 YES 138/EEQ-4 Primary-1 2 basement 411 YES 138/EEQ-4 Primary-2 2 basement 181 YES 138/EEQ-5 Primary-1 2 basement 181 YES 138/EEQ-5 Primary-1 RCB 300-400 YES 1400ress Deep Alemate RCB ADAP YES 1400ress Deep Alemate RCB ADAP YES 141SC-1 Primary-1 3 washRCB 600/1200 YES 141SC-2 Primary-1 3 washRCB 50/0400 YES 141SC-3 Primary-1 3 washRCB 50/0400 YES 141SC-4 Alemate 1 APC/XCB	138EEQ	2-1	Primary-1			2	basement	283	YES		
APC wiXCP to 138/EEQ-4 Primary-1 2 basement APC wiXCP to 388/EEQ-4A Primary-1 2 basement APC wiXCP to 388/EEQ-4A Primary-2 2 basement APC wiXCP to 388/EEQ-4A Primary-2 2 basement APC wiXCP to 4PC wiXCP to 388/EEQ-5 Primary-2 2 basement APC wiXCP to 4PC wiXCP to 4PC wiXCP to 388/EEQ-5 Primary-1 Primary-	138EE0					2		271			
Image: Instruction of the second s							APC w/XCP to				
APC wXCP to basement APC wXCP to basement YES 138/EC0-5 Primary-2 2 basement 212 YES 138/MV-1 Primary-1 RCB 300-400 YES 140/140 140/Hess Deep Alternate RCB 300-400 YES 140/140 141/SC-1 Primary-1 RCB 300-400 YES 140/140 141/SC-1 Primary-1 RCB 300-400 YES 140/140 141/SC-2 Primary-1 3 washPCS 150/40 YES 141/SC-3 Primary-1 3 washPCS 150/40 YES 141/SC-3 Primary-1 3 washPCS 150/40 YES 141/SC-4 Alternate 1 APC/XCB 150/40 YES 141/SC-5 Primary-1 3 washPCS 150/40 YES 141/SC-6 Alternate 1 APC/XCB 150/600 YES 141/SC-7 Alternate 1 APC/XCB 150/500 <							APC w/XCP to				
138EEC-4A Primary-2 2 basement 111 YES 138EEC-5 Primary-2 2 basement 212 YES 138MV-1 Primary-1 RCB 300-400 YES	138EEQ	2-4	Primary-1			2		411	YES		
138EC-5 Primary-2 2 basement 212 YES 139MV-1 Primary-1 0 RCB 300-400 YES 1000000000000000000000000000000000000	138EEQ	2-4A	Primary-2			2	basement	181	YES		
140504B Primary-1 RCB 300-400 YES 140Hess Deep Alternate RCB ADAP YES 141SC-1 Primary-1 3 washPCS 150/600 141SC-2 Primary-1 3 washPCS 150/600 WashPCS 150/600 WashPCS 150/600 141SC-2 Primary-1 3 washPCS 150/600 WashPCS 150/600 WashPCS 150/600 WashPCS 150/600 WashPCS 150/40 141SC-2 Primary-1 3 washPCS 150/40 WashPCS 150/40 WashPCS 150/40 WashPCS 141SC-3 Primary-1 3 washPCS 150/40 WashPCS 141SC-4 Alternate 1 APC/XCB 150/600 YES Idee 141SC-5 Primary-1 1 APC/XCB 150/500 Idee Idee 141SC-6 Alternate 1 RCB 150/500 YES Idee <						2		212	YES		
140Hess Deep Atternate RCB ADAP YES 141SC-1 Primary-1 3 Wash/PCB 150/400 YES 141SC-1 Primary-1 3 Wash/PCB 600/1200 YES 141SC-2 Primary-1 3 Wash/PCB 150/40 C YES 141SC-2 Primary-1 3 Wash/PCB 150/40 C YES 141SC-3 Primary-1 3 Wash/PCB 150/40 C YES 141SC-4 Atternate 1 APC/XCB 150/40 C YES 141SC-5 Primary-1 3 Wash/PCB 150/600 YES YES 141SC-6 Atternate 1 APC/XCB 150/600 YES YES 141SC-6 Atternate 1 APC/XCB 150/500 YES YES 141SC-7 Atternate 1 RCB 150/500 YES YES 141SC-7' Atternate 2 Wash/RCB 150/500 YES YES 141SC-9 Atternate 2 Wash/RCB <td></td> <td>1 B</td> <td>Primary-1 Primary-1</td> <td></td> <td></td> <td></td> <td>RCB</td> <td>300-400</td> <td>YES</td> <td></td> <td></td>		1 B	Primary-1 Primary-1				RCB	300-400	YES		
141SC-1 Primary-1 3 wash/PCS 150/4 C 141SC-1 Primary-1 3 wash/PCS 150/400 141SC-2 Primary-1 3 wash/PCS 150/400 141SC-3 Primary-1 3 wash/PCS 150/400 141SC-3 Primary-1 3 wash/PCS 150/400 141SC-3 Primary-1 3 wash/PCS 150/400 141SC-4 Alternate 1 APC/XCB 150/600 YES 141SC-5 Primary-1 3 wash/RCB 150/600 YES 141SC-6 Alternate 1 APC/XCB 150/500 YES 141SC-6 Alternate 1 RCB 150/500 YES 141SC-7 Alternate 1 RCB 150/500 YES 141SC-7' Alternate 2 wash/RCB 150/500 YES 141SC-7' Alternate 2 wash/RCB 150/500 YES 141SC-7 Alternate 2		s Deep					RCB	ADAP			
APC/XCB 150/600 wash/PCS 141SC-2 Primary-1 3 wash/RCB 600/900 YES 141SC-3 Primary-1 3 wash/RCB 150/4 C wash/RCB 150/4 C 141SC-3 Primary-1 3 wash/RCB 150/4 C wash/RCB 150/4 C 141SC-4 Alternate 1 APC/XCB 150/600 YES 141SC-5 Primary-1 3 wash/RCB 150/600 YES 141SC-6 Alternate 1 APC/XCB 150/600 YES 141SC-6 Alternate 1 RCB 150 YES 141SC-6 Alternate 1 RCB 150/700 YES 141SC-7 Alternate 2 wash/RCB 150/700 YES 141SC-7' Alternate 2 wash/RCB 150 YES 141SC-7' Alternate 2 wash/RCB 1150 YES		.					wash/PCS	150/4 C			
141SC-2 Primary-1 3 wash/PCS 150/40 141SC-3 Primary-1 3 wash/PCS 150/40 141SC-3 Primary-1 3 wash/PCS 150/40 141SC-3 Primary-1 3 wash/PCS 150/40 141SC-4 Alternate 1 APC/XCB 150/600 YES 141SC-5 Primary-1 1 APC/XCB 150/600 YES 141SC-6 Alternate 1 APC/XCB 150/600 YES 141SC-6 Alternate 1 APC/XCB 150/600 YES 141SC-7 Alternate 1 RCB 150 YES 141SC-7 Alternate 2 wash/RCB 150/500 YES 141SC-7 Alternate 2 wash/RCB 150/500 YES 141SC-7 Alternate 2 wash/RCB 150/500 YES 141SC-9 Alternate 2 Wash/RCB 150 YES 141SC-9 <	141SC-1	1	Primary-1			3	APC/XCB	150/600	YES		
APC/XCB 150/400 141SC-3 Primary-1 3 wash/RCB 150/4C 141SC-4 Alternate 1 APC/XCB 150/450 YES 141SC-4 Alternate 1 APC/XCB 150/650 YES 141SC-5 Primary-1 1 APC/XCB 150/600 YES 141SC-6 Alternate 1 APC/PCS/XCB 150/500 YES 141SC-6 Alternate 1 RCB 150/500 YES 141SC-7 Alternate 2 wash/RCB 150/500 YES 141SC-7' Alternate 2 wash/RCB 150/500 YES 141SC-7' Alternate 2 wash/RCB 150 YES 141SC-8 Alternate 2 wash/RCB 150 YES 141SC-9 Alternate 400 400 400 400 141SC-9 Alternate 550 400 400 400 400 143SUE-A Primary-1<	14180-3	2	Primary-1			3	wash/PCS	150/4 C	YES		
141SC-3 Primary-1 3 wash/RCB 150/650 YES 141SC-4 Alternate 1 APC/XCB 150/600 YES 141SC-5 Primary-1 1 APC/PCS/XCB 140/4 C/ 140/4 C/ 141SC-6 Alternate 1 RCB 150 YES 141SC-6 Alternate 1 RCB 150/700 YES 141SC-7 Alternate 2 wash/RCB 150/700 YES 141SC-7' Alternate 2 wash/RCB 150 YES 141SC-9 Alternate 2 wash/RCB 1500 YES 141SC-9 Alternate 400 400 400 400 141SC-9 Alternate 550 400 400 400 400 400 143SUE-A Primary-1 R	1-100-2	-				3	APC/XCB	150/400	120		
141SC-5 Primary-1 1 APC/PCS/XCB 140/4 C/ 700 YES 141SC-6 Alternate 1 RCB 150 YES 141SC-7 Alternate 2 wash/RCB 500/650 YES 141SC-7' Alternate 2 wash/RCB 1150 YES 141SC-7' Alternate 2 wash/RCB 1150 YES 141SC-8 Alternate 2 wash/RCB 1200 141SC-9 Alternate 6 400 141SC-9' Alternate 650 YES 141SC-9 Alternate 650 YES 141SC-9 Alternate 650 YES 141SC-9 Alternate 650 143EUE-A Primary-1 RCB 500 YES							wash/RCB	150/650			
141\SC-5 Primary-1 1 APC/RCS/RCB 700 YES 141\SC-6 Alternate 1 RCB 150 YES 141\SC-7 Alternate 2 wash/RCB 500/650 YES 141\SC-7' Alternate 2 wash/RCB 1150 YES 141\SC-7' Alternate 2 wash/RCB 1150 YES 141\SC-9 Alternate 2 wash/RCB 1200 141\SC-9 Alternate 6 400 141\SC-9' Alternate 550 141\SC-9 Alternate 6 550 143\SC-9' Alternate 6 550 143\SC-9 Alternate 6 750 143\SC-9 Alternate 6 750 143\SUB-A Primary-1 750 YES	141SC-4	4	Alternate			1	APC/XCB		YES		
141 SC-6 Alternate 1 RCB 150 YES 141 SC-7 Alternate 2 wash/RCB 150/500 YES 141 SC-7 Alternate 2 wash/RCB 500/650 YES 141 SC-7' Alternate 2 wash/RCB 1150/500 YES 141 SC-7' Alternate 2 wash/RCB 1150 YES 141 SC-8 Alternate 2 wash/RCB 1500 YES 141 SC-9 Alternate 400 1200 1400 1400 141 SC-9 Alternate 550 500 1400 1400 1400 141 SC-9 Alternate 8 550 1400 1400 1400 143 HUE-A Primary-1 8 RCB 500 YES 1400	14190 5	5	Primany-1			1			VEC		
141\SC-7 Alternate 2 wash/RCB 500/650 YES 141\SC-7' Alternate 2 wash/RCB 1150 YES 141\SC-8 Alternate 2 wash/RCB 1150 YES 141\SC-9 Alternate 2 wash/RCB 1200 2 141\SC-9 Alternate 2 400 2 400 141\SC-9' Alternate 2 6 2 400 141\SC-9' Alternate 550 2 2 400 143\LL-A Primary-1 2 RCB 500 YES							RCB	150			
Alternate Alternate APC/XCB 1150 YES 141SC-7' Alternate 2 wash/RCB 1150 YES 141SC-8 Alternate 6 1200 6 6 141SC-9 Alternate 6 400 6 6 141SC-9' Alternate 6 550 6 6 141SC-9' Alternate 6 8 550 6 6 143SLL-A Primary-1 6 8 76 YES 6 6 143HUE-A Primary-1 6 8 76 YES 6 6	141SC-7	7	Alternate			2			YES		
141SC-8 Alternate 1200 141SC-9 Alternate 400 141SC-9' Alternate 550 141SC-9' Alternate 550 143LL-A Primary-1 RCB 500 143HUE-A Primary-1 RCB 1160							APC/XCB				
141SC-9' Atemate 550 143ALL-A Primary-1 RCB 500 YES 143HUE-A Primary-1 RCB 1160 YES	141SC-8	8	Alternate			۷.	waarwAUD	1200	153		
143ALL-A Primary-1 RCB 500 YES 143HUE-A Primary-1 RCB 1160 YES											
	143ALL-	-A	Primary-1					500			
	143HUE 143HUE		Primary-1 Primary-1				RCB RCB	1160 300	YES YES	l	

			OITE		SUCC	# 0 00	0.00	Denth	Logge		
143S	PRECRUISE NAME	Primary-1	SILE	HOLE	ESS	# Holes	RCB	Depth 850	d YES	Objective	SITE_COMMENT
143A 144H		Primary-1 Primary-1					RCB	50 550	NO YES		
						2		430			
144H		Primary-1				1	APC/XCB APC	<170 505	YES		
144P	EL-3	Primary-1				2	RCB APC	<180 250	YES		
144S		Primary-1				2	RCB APC	<80	YES		
	YL-2A IIT-1(E)	Primary-1 Primary-1					APC/XCB APC RCB	200 850	YES YES		
144S		Primary-1 Primary-2					RCB RCB	175 200	YES YES		
1448	01C	Primary-2					1		YES		
		Primary-2				2	RCB	300 refusal	YES		
145N	IW-1A	Primary-1				1 2	APC XCB	360 refusal	YES		
145N	IW-4A	Primary-1				1	APC XCB APC	150 refusal	NO		
145D	SM-1	Primary-1				2 1	XCB/RCB	800	YES		
145D	SM-2	Alternate				2 1	APC XCB	refusal 300	NO		
1450	SM-2A	Alternate				2 1	APC XCB	refusal 300	NO		
						2		refusal			
145D	ISM-3	Primary-1				1 2	APC XCB APC	300 refusal	NO		
145D	SM-4	Primary-1				1 2	XCB/RCB APC	800 refusal	YES		
145P	M-1A	Primary-1				1	XCB/RCB	350	YES		
145P	M-1B	Alternate				2	APC XCB/RCB	refusal 350	YES		
145P	M-1C	Alternate				2 1	APC XCB/RCB	refusal 400	YES		
							APC/XCB CORK/RCB	400 400			
146V		Primary-1				3	XCB	220-320	YES		
146V 146V		Primary-1 Primary-1					APC/XCB APC/XCB	600 600	YES YES		
1460		Primary-1				2	APC/XCB CORK/RCB		YES		
1460	0M-7	Primary-1					APC/XCB	300	YES		
	anta Barbara	Primary-1 Primary-1					APC/XCB APC/XCB	500 200	YES YES		
146V 146V		Alternate Primary-2					APC/XCB APC/XCB	600 600	YES YES		
146V		Alternate					APC/XCB	600	YES		
							APC/XCB CORK/RCB	400 400			
146V	1-5b	Alternate				3	XCB APC/XCB	220-320 400	YES		
146V		Alternate				2	CORK/RCB	400	YES YES		
	M-2b	Alternate					APC/XCB APC/XCB	500 585			
1460 1460	0M-3a 0M-4	Alternate Primary-2				2	CORK/RCB APC/XCB	585 600	YES YES		
1460	M-7b	Primary-2					APC/XCB	300 660	YES YES		
	M-8a	Primary-2 Alternate					APC/XCB APC/XCB	500	YES		
146O 147H	0M-10 ID-3	Primary-2 Primary-1					APC/XCB RCB	500 1000	YES YES		
147H	ID-2	Alternate					RCB	1000	YES		
147H 1485		Alternate Primary-1					RCB RCB	1000 400	YES YES		
								850+/refus		Sample crust within the OCT to establish nature of upper crust. Determine history of turbidite sedimentation. Date	
149IA	AP-2	Primary-1				3	RCB/APC	al		Cenozoic deformation. Sample crust within the OCT to establish nature of upper	
	AP-3C	Deine and O				<u> </u>	000/400	830+/refus	VE0	crust. Determine history of turbidite sedimentation. Date	
14914	AP-30	Primary-2				3	RCB/APC	al		Cenozoic deformation. Sample crust within the OCT to establish nature of upper	
14914	\P-4	Primary-1				3	RCB/APC	680+/refus al		crust. Determine history of turbidite sedimentation. Date Cenozoic deformation.	
								980+/refus		Sample crust within the OCT to establish nature of upper crust. Determine history of turbidite sedimentation. Date	
14914	AP-5	Primary-2				3	RCB/APC	al	YES	Cenozoic deformation.	
149G		Primary-3					RCB	650	YES	Determine lithologic composition of terrane above S' reflector	
		Primary-1 Primary-1					APC/XCB APC/XCB/RCB	908 1271	YES YES		
150M	IAT-12	Primary-2					APC/XCB/RCB	477	YES		
150M	IAT-14	Primary-2 Primary-2					APC/XCB/RCB APC/XCB/RCB	937 1300	YES YES		
	ERM 1 ERM 2A	Primary-1 Alternate				3 3	APC/XCB/RCB APC/XCB/RCB	680+ >1400	YES YES		
151Y	ERM 3	Primary-1				3	APC/XCB	?	YES		
151Y		Primary-2 Primary-1				3 3	APC/XCB APC/XCB	? ?	YES YES		
151F	RAM 1A	Primary-1 Primary-1				3 3	APC/XCB	? ?	YES YES		
151F	RAM 2	Primary-2				3	APC/XCB	?			
151E 151E	GM 2	Primary-2 Primary-1				3 3	APC/XCB/RCB APC/XCB	? ?	YES YES	<u> </u>	<u> </u>
151E	GM 3	Primary-2				3 3	APC/XCB/RCB	? ?	YES		
151IC	CEP 1	Primary-1 Primary-1				3	APC/XCB	?			
	CEP 2 CEP 3	Primary-3 Primary-1				3 3	APC/XCB APC/XCB	? ?	YES		
15110	CEP 4	Primary-3				3	APC/XCB	? ?	YES		
151N 151S	IFR 1 IFR	Primary-3 Primary-3				3 3		?			
152F	G63-1	Primary-1				2	APCXCB drill/RCB	50/100 100/840	YES		
							APCXCB	50/150			
152E	G63-2	Primary-1				2	drill/RCB APC/XCB	150/1620 200/250	YES		
152E	G63-3	Primary-2				2	drill/RCB	250/1570	YES		
152E	G63-4	Primary-2				2	APC/XCB drill/RCB	200/250 250/1330	YES		
153M	IK-1	Primary-1				-	RCB	>200-400	YES		
153M	1K-2	Pirmary-1					RCB	>200-400 250 - 250	YES		
	D 4	Drimer: 1				2	APC - APC	250/600/1	VEC		
154C 154C		Primary-1 Primary-1				3 3	APC/XCB/RCB APC	300 250	YES YES	 	

					SUCC				Logge		
LEG	PRECRUISE NAME	SITE PRIORITY	SITE	HOLE	ESS		OPS APC	Depth 250	d	Objective	SITE_COMMENT
	CR-3	Primary-1				3	APC/XCB	250/600	YES		
154	CR-4	Primary-1				3 1	APC	250 400/950	YES		
154	CP 6	Brimony 1					drill/RCB APC APC/XCB	250 250/400	YES		
	CR-5 CR-6	Primary-1 Primary-2					APC/ACB	250/400	YES		
154	CR-7	Primary-2				3	APC	250	YES		
155	AF-1	Primary-2				1-2	APC/XCB RCB		YES		
155	AF-2	Primary-1					APC/XCB APC/XCB	350 125	YES		
							APC/XCB	225			
155	AF-3	Primary-1					APC/XCB APC/XCB	143 179	YES		
155	AF-4	Primary-1					APC/XCB APC/XCB	50 225	NO		
155	AF-5	Primary-1				2	APC/XCB	160	YES		
155	AF-6	Primary-1				2	APC/XCB APC/XCB	275 143	YES		
	AF-7 AF-8	Primary-2 Primary-2				1-2	APC/XCB RCB APC/XCB	273	YES YES		
	AF-9	Primary-1						275 225	NO		
155	AF-9	Fillinary-1					APC/XCB	420	NU		
155	AF-10	Primary-1					APC/XCB APC/XCB	50 50	YES		
							APC/XCB	275			
	AF-11	Primary-1					APC/XCB APC/XCB		YES NO/Y		
	AF-12 AF-13	Primary-1 Primary-1				2	APC/XCB APC/XCB	100	ES NO		
155	AF-14	Primary-1				1	APC/XCB	370	YES		
155	AF-15	Primary-1				2	APC/XCB	100 273	YES		
	AF-16	Primary-1				1-2	APC/XCB	200-273	YES		
	AF-17 AF-18	Primary-1 Primary-3					APC/XCB APC/XCB	133 179	NO YES		
								133-273			
	AF-19	Primary-2				2	APC/XCB	133 180/40	YES		
155	AF-20	Primary-1				2-3	APC/XCB	40	NO		
		Primary-1				2	APC/XCB	250 143			
	AF-22 NBR-0	Primary-1 Primary-3			$\left \right $		APC/XCB XCB/RCB	225 691	YES NO		
									COR		
156	NBR-1	Primary-2					XCB/RCB	342	K COR		
156	NBR-2	Primary-1					XCB/RCB	590	К		
156	NBR-3	Primary-1					XCB/RCB	723	COR K		
156	NBR-4	Primary-3					XCB/RCB	568	COR K		
									COR		
	NBR-5 NBR-6	Primary-3 Primary-3					XCB/RCB XCB/RCB	497 801	K NO		
157	MAP-1	Primary-1					APC/XCB	500	YES		
	MAP-2 MAP-3	Primary-2 Primary-1					APC/XCB APC/XCB	300 300	YES YES		
157	MAP-4	Primary-1					APC/XCB	300	NO		
	VICAP-1a VICAP-1	Primary-1 Alternate					APC/XCB/RCB APC/XCB/RCB	1050 1000	YES YES		
157	VICAP-2a	Primary-1					APC/XCB/RCB	580	YES		
	VICAP-2 VICAP-3	Alternate Primary-2					APC/XCB/RCB APC/XCB/RCB	800 700	YES YES		
	VICAP-4	Primary-1					APC/XCB/RCB		YES		
157	VICAP-5 VICAP-7	Primary-2 Primary-1					APC/XCB/RCB APC/XCB/RCB	700	YES YES		
157	VICAP-8 TAG-1	Primary-2 Primary-2					APC/XCB/RCB RCB		YES YES		
158	TAG-2	Primary-1					RCB	>450	YES		
	TAG-3 TAG-4	Primary-2 Primary-4							YES YES		
159	IG-1	Primary-1					RCB/drill	800/1600	YES		
	IG-2 IG-3	Primary-1 Primary-1					RCB RCB	800 800	YES YES		
159	IG-1bis	Alternate					RCB	1000	YES		
	IG-2B IG-2C	Alternate Alternate					RCB RCB	500 500	YES YES		
	IG-3bis	Primary-2					RCB	800	YES		
							APC/XCB APC	150/170 150			
160	ESM-1A / MEDSAP- 1D	Primary-1				4	APC APC/RCB	150 150/350	YES		
100		i fifficar y=1				-		100/120	160		
	ESM-1 / MEDSAP-						APC/XCB APC APC	100 100			
160		Primary-2				4	APC/RCB APC		YES		
							APC/XCB	50/70			
160	ESM-2A	Primary-1					drill/RCB APC	50/250 135	YES		
100	ESM 24	Primor: 1					APC/XCB	135/155	VEO		
	ESM-3A	Primary-1					drill/RCB APC	135/300 200	YES		
160	ESM-4A	Primary-1					APC/XCB APC/XCB	200/300 200/300	YES		
160	MR-1	Primary-1					APC	200	NO		
								refusal/35 0			
	MR-1B	Primary-2					APC/XCB APC	refusal	NO		
	MR-2 MR-3	Primary-1 Primary-1					APC APC		NO NO		
160	MEDSAP-2B	Primary-1				4	APC	refusal	NO		
	MEDSAP-3 MEDSAP-4A	Primary-1 Primary-1					APC APC		NO NO		
160	MEDSAP-4C	Primary-2				4	APC	200	NO		
	MV-1/1, MV-1/2	Primary-1					APC	200 3-200	YES		
160	MV-2	Primary-2				4	APC	1-50	YES		

					SUCC				Logge		
LEG	PRECRUISE NAME	SITE PRIORITY	SITE	HOLE	ESS	# Holes	OPS	Depth	d	Objective	SITE_COMMENT
400			004								
162	BJORN-1 FENI-1		984 980)							
162	FENI-2 GARDAR-1		981 983	3							
162	ICEP-1 ICEP-3		907 985	5							
164	NAMD-1 BRD-1		982 996	6							
	BRH-1A BRH-4		997 994								
	BRH-6 CFD-5		995 991								
	CFD-6 CFD-7		993 992								
	HT-2A HT-3A		1023 1024								
168	HT-4A HT-5A		1025	5							
168	HT-ALT LH-2A		1029	9							
168	PP-4A PP-5A		1032	7							
169	BH-2 BH-3		1026	5 D							
				B, C, E,							
169	BH-7 BH-8 Boot Hill		1035	5 H							
169	Bent Hill DD-1		856 1036	6 A							
169	DD-2 DD-3		1036 1036	6 C							
169	Dead Dog ET-1		858 1038	3 A							
	ET-10 ET-2		1038 1038	B B							
	ET-3 ET-4		1038 1038	3 D							
	ET-5 ET-6		1038 1038								
169	ET-7 ET-8		1037 1038	7 A, B							
169	ET-9 Middle Valley		1038 857	в Н							
181	SWPAC-10B	Alternate Alternate									
181	SWPAC-1C	Primary Primary	1119		NO						
181	SWPAC-3A	Added Primary	1125 1123	5							
181	SWPAC-6B	Primary Primary Primary	1120)							
181	SWPAC-8A	Primary	1122	2							
182	GAB-01C	Primary Primary	1128	3							
182	GAB-03B	Primary Primary	1133 1134	1							
182	GAB-05B	Primary Primary	1126 1130								
182	GAB-07A	Primary Primary	1132 1127	7							
182	GAB-09A	Alternate Primary	1131 1129								
183	KIP-10C	Alternate Alternate									
183 183		Alternate Alternate									
183	KIP-13B	Primary	1135	i	NO						Drilling problems/substituted by site KIP-13C. KIP-13C added in attempt to reach basement.
					PARTI						Allowed time expired/other-slow ROP. Basement recovered/dated but not to depth desired due to
183	KIP-14C	Added Alternate	1136		AL						slow ROP
183	KIP-1B	Alternate Alternate									
183	KIP-1E	Alternate Alternate	1139		YES						Logging compromised by weather/sea state
183 183	KIP-2C KIP-2E	Alternate Primary	1140		YES						Logging objectives also achieved.
183	KIP-3C	Alternate Primary			NO						Substituted by alternate site KIP-1D.
		Primary	1137		YES						Logging compromised by weather/hole conditions
183	KIP-6D	Alternate									Logging compromised by sea state/time
		Primary Alternate	1138	<u> </u>	YES						constraints
183	KIP-9B	Primary Alternate			NO						Substituted by new site KIP-9D
		Added	1141		PARTI AL						Drilling problems/Added site KIP-9E because of stuck/severed pipe.
	KIP-9E	Added	1142		PARTI AL						Drilling problem and allowed time expired. Pipe stuck/freed, departed for port 2 hrs early.
		Primary	1144	1	YES PARTI						Stopped 250 m short of depth objective of 450
		Primary Primary	1145	5	AL						mbsf. Substituted by Site SCS-5F
		Primary	1146		YES						Exceeded depth objective of 520 mbsf by 80 m.
			1148		YES						Exceeded depth objective of 700 mbsf by 150 m.
184	SUS-5U	Primary	1148	(YES						Exceeded depth objective of 700 mbsf by 150 m.

LEG	PRECRUISE NAME		SITE	HOLE	SUCC ESS	# Holes	OPS	Depth	Logge d	Objective	SITE_COMMENT
184	SCS-5D	Alternate	SHL		200	# 110163	013	Deptil	u		
		Alternate Added	1147	,	YES						
1040	500 51	Added									Clearance to drill this site still not received as of
1845	SCS-9	Primary	1143	5	YES						2/1/99. Exceeded depth objective of 400 mbsf by 100 m.
1858		Primary Primary	801 1149		YES YES						Deepened Hole 801C by 341.4 m
185E	BON-8A	Primary	1143		TES						
		Alternate Alternate									
1864		Alternate									
186	JT-1C	Primary	1150		YES						First triple casing installation/first instrument emplacement
		Primary			NO						JT-2L was cored instead.
186	JT-2L	Added	1151		YES						Longest open hole casing string set in ODP history
186J		Alternate									
1005	J1-4	Alternate									Not drilled. All sites were primary sites. Actual
1874	AAD-13B	Primary									locations were chosen after analyses were performed on ICP.
187/	AAD-14C	Primary	1160		YES						
		Primary Primary	1154		YES						not drilled
187/	AAD-20A	Primary									not drilled
		Primary Primary									not drilled
187	AAD-27A	Primary									not drilled
		Primary Primary	1157 1158		YES YES						
187	AAD-2B	Primary	1159	9	YES				-		
		Primary Primary	1164 1156		YES YES						
187	AAD-35A	Primary	1155	i	YES						
	AAD-36A AAD-37A	Primary	1152		YES						Not drilled. PRS had NA on site priority
187/	AAD-38A	Added	1161		YES						
		Added Primary	1162 1163		YES YES				-		
187/	AAD-4C	Primary									not drilled
1874	AAD-8C	Primary	1153	5	YES						Cored deeper than orginal science depth
		Primary	1165	i	YES						objective.
		Alternate Alternate									
	PBF-4B	Alternate									
100	PBF-5A	Alternate									Lost age control on sediments. Time expired
1886	PBF-6A	Primary	1167		PARTI AL						short of depth objective. Sand/hole stability problems.
188F	PBF-7B	Alternate									
188F	PBS-1A	Alternate									Substituted by Site PBS-9B. Ice pack prevented
		Primary			NO						reaching Site PBS-2A.
		Alternate Alternate									
188F	PBS-5A	Alternate									
		Alternate Alternate									
		Added	1166	6							Achieved operational depth objective.
		Alternate Primary	1172	2	YES						
		Alternate Alternate									
	TD AL	Primary	1171		YES						
		Primary	1169		NO						Weather did not allow high res analysis. Stopped with one hole.
189	NSTR-2A	Primary	1170)	YES						
		Primary Alternate	1168		YES				-		Required only 3 holes instead of 4.
190E	ENT-01A	Primary	1173		YES						
		Alternate Primary	1174		YES						
190E	ENT-04A	Alternate									
190E	ENT-05A	Alternate			PARTI						
		Primary	1176		AL				-		Extensive sand, and site not of scientific interest.
190E	ENT-08A	Primary Alternate	1175		YES				<u> </u>		
190E	ENT-09A	Alternate	1178	8	YES						Substituted by Site WART 04D
190V	WNT-01B	Primary Added	1177		NO YES						Substituted by Site WNT-01B
190V	WNT-02A	Alternate Alternate									
		Alternate									Replaced Sites SR-1 and 3. HRRS spud tests.
	MARIANA BACKARC	Added	1182		PARTI AL						Successful test in bare rock, but ran out of time for HRRS casing installation.
					PARTI		İ		1		Replaced Sites SR-1 and 3. HRRS spud tests.
		Added	1180		AL PARTI				-		Lithology was too soft for successful test. HRRS spud tests. Lithology was too soft for
191F	ROTA 1B	Added	1181		AL						Because of broken brakes on the drawworks, the
											ship sailed to Guam to pick up new brake bands
											shipped from Guam. This, in combination with a medivac and outrunning two typhoons, did not
		Dimension			NO						leave enough time to test the HRRS on Shatsky
1915	on-I	Primary			NO						Rise.
1010	SR-3	Primary			NO						The HYACE tool was not ready when the leg began. Testing of the tool was moved to Leg 194.
191	WP-2A	Primary	1179	1	YES						A seismic observatory was successfully installed. Depth objective of 100 m basement penetration
1000	DJ-11C	Primary	1185		YES						exceeded. Total basement penetration was 216.6
		Primary							1		Scientific objectives attained. Basement
1920	DJ-12A	Added	1186	5	YES						penetration = 65.4 m. Scientific objectives attained. Basement
1920	DJ-14A	Added	1187		YES						penetration = 135.8 m.
											Depth objective in basement not reached, but 54% of basalt (80 m penetration) was recovered.
								1	1		This provides abundant material for post cruise
	21.20	Drimor			PARTI						This provides abundant material for post cruise
1920		Primary Alternate	1183		PARTI AL						research.
1920 1920 1920	DJ-3C DJ-6B	Primary Alternate Primary Alternate	1183	8							research. Substituted by site OJ-6D.

1.50					SUCC	# 0 0 0	ODC	Danth	Logge	Objective	
LEG	PRECRUISE NAME	SITE PRIORITY	SILE	HOLE	ESS	# Holes	OPS	Depth	d	Objective	SITE_COMMENT Exceeded depth objective of 100 m into acoustic basement. However, acoustic basement was volcaniclastic sediment instead of basaltic lava
192	OJ-6D	Added	1184		PARTI AL						flows. Total penetration was 337.7 m into basement. Substituted by Site 12A because approval was
		Primary Alternate			NO						not granted to drill at this site by Government of Solomon Islands.
193	PCM-1A	Primary	1190		NO						Allowed time expired. PNG Customs agents required ship to leave 2 days ahead of schedule.
193	PCM-2A	Primary Primary	1188 1189		YES YES						
		Primary Alternate									why was this site not drilled?
		Alternate Alternate	1191								n/a under science objectives
194		Primary	1193		YES						ADCB testing in 1193B. Severed pipe in 1193C. Site recovery was 30.0%
		Primary	1194		YES						Logged hole 1194B. APC/XCB/RCB at two holes Site recovery was 44.2%.
194	CS-03A	Alternate									Partial logging. Two hole with APC/XCB/RCB.
194	CS-05A	Primary	1198		YES						Stuck pipe episodes. Site recovery was 56.5%. RCB/ADCB in two holes. Logging. Stuck pipe
		Primary	1196		YES						episodes. Site recovery was 12.4%. No logging. Two holes. APC/XCB/RCB.Site
		Alternate Alternate	1197		YES						recovery was 32.6%.
		Primary	1195		YES						Two holes. APC/XCB. Hole 1195A aborted due parted core line.Partial logging.Recovery was 79.5%.
		Alternate Alternate									
		Alternate	1192		YES						HYACE testing site. APC/XCB. No logging. Recovery was 82.9%.
		Alternate									One RCB hole. Partial logging. Site recovery was
		Alternate Alternate	1199		YES						22.0%.
195	KS-1	Alternate	1202		YES						Alternate site cored off Taiwan-bonus site! 4 x APC to refusal, XCB to TD. No wireline logging due to current induced DP vibration.
		Primary	1202		YES						Shallower hole depth deemed acceptable to meet CORK science objectives.
		Primary	1200		YES						Shallower hole depth deemed acceptable to meet ION seismometer needs.
		Primary	1173		YES						ENT-01A on Leg 190. Leg 196 is the second of two legs (Leg 190 was the first) to drill in Nankai.
		Primary			NO						ENT-03A on Leg 190. Insufficient time to complete this work.
		Alternate Alternate									ENT-07A on Leg 190 ENT-06A on Leg 190
	1177	Alternate Alternate									WNT-01B on Leg 190 ENT-09A on Leg 190
			000		PARTI						Site numbers are used for Leg 196 precruise names because some of the sites were moved when they were drilled. The ACORK installation was not completed and the shallow LWD hole
	ENT-02A	Primary Alternate	808		AL						was not drilled due to time.
196	ENT-05A	Alternate Alternate									
196	ENT-10A	Alternate Alternate									
		Alternate Alternate									
		Alternate Alternate									
	HE-1B	Primary Alternate									
		Alternate									Penetration in basement was adequate to
197	HE-3	Primary	1204		PARTI AL						recover the minimum number of flows required. Time expired for Detriot area and cut short drilling here. Basement penetration was 452.6 m and fully
		Primary Primary	1203		YES						satisfied recovery of needed flow units
	HE-4A	Primary	1205		YES						Basement penetration was 283.3 and fully satisfied recovery of needed flow units
197	HE-5A	Primary Alternate									
197	HE-5C	Alternate Primary									
197	HE-5D	Alternate									Basement penetration of 278.2 m fully satisfied
		Primary Alternate	1206		YES						recovery of needed flow units.
198	DSDP-305	Alternate	1211		YES PARTI						Excellent record of Paleogene and upper Cretaceous.
198	DSDP-306	Alternate	1214		AL						Chert hindered recovery in Cretaceous. Excellent record of Paleogene and upper
		Alternate Alternate	1212		YES						Cretaceous.
198	SHAT-11	Alternate									
198	SHAT-13	Alternate									
		Primary	1209		YES						Excellent record of Paleogene and upper Cretaceous.
		Primary	1209		YES						Excellent record of Paleogene and upper Cretaceous.
					PARTI						Chert hindered recovery in Cretaceous; stormended logging early. Still recovered black
		Primary	1213		AL PARTI						shale (OAE1a). Unexpected uncomformity - most of Paleogene
		Primary Primary	1208		AL PARTI AL						was missing. Outstanding Neogene recovered. Chert hindered recovery in Cretaceous. Still recovered black shale (OAE1a).
198	SHAT-6	Alternate	1207								
		Alternate Alternate									

						1	r –	1		
				SUCC				Logge		
LEG PRECRUISE NAME 198SHAT-9B		SITE	HOLE	ESS	# Holes	OPS	Depth	d	Objective	SITE_COMMENT
198SHAT-9B 199PAT-10B	Alternate Primary	1221		YES						
199PAT-12C 199PAT-13C	Primary	1222		YES						
199PAT-13C	Alternate Alternate									
199PAT-15D	Primary	1215		YES						
199PAT-16A 199PAT-17C	Alternate Primary	1219		YES						
199PAT-18A	Alternate									
199PAT-19A 199PAT-21	Primary Alternate	1217		YES						
	Alternate									
199PAT-26A	Primary	1216		PARTI AL						Chert problems caused an early departure
199PAT-6D	Alternate									
199PAT-8C 199PAT-9D	Primary Primary	1218 1220		YES YES						
200H20-2	Alternate									
200H20-3 200H20-4	Alternate Alternate									
200H2O-1	Primary			NO						Substituted by site H2O-5
200H2O-5	Added	1224		YES						Added NE junction box, away from cable,& after PDR survey
										Ancillary proposal after Prospectus finished,
200NU-1 201EQP-1A	Alternate Primary	1223 1226		YES YES						subject to leaving port early.
201EQP-2A	Primary	1225		YES						
201PRB-1A 201PRB-2A	Alternate Primary	1231		YES						
201PRU-1A	Primary	1229		YES						
201PRU-2A 201PRU-3A	Primary Primary	1228 1227		YES YES						
201PRU-4A	Primary	1227		YES						
201SITE 679 201SITE 682	Alternate Alternate									
201SITE 683	Alternate									
201SITE 686	Alternate									
201SITE 687 201SITE 688	Alternate Alternate								<u> </u>	
201SITE 844	Alternate									
201SITE 845 201SITE 847	Alternate Alternate									1
201SITE 848	Alternate									
201SITE 850 201SITE 852	Alternate Alternate									
201SITE 853	Alternate									
202CAR-1C 202CAR-2C	Primary Primary	1239 1238		YES YES						
202COC-2A	Alternate	1241		YES						
202COC-3A 202COC-4A	Added Alternate	1242		YES						Recovery passed 7 kilometers at this site
202NAZCA-10A	Primary	1236		YES						
202NAZCA-14A 202NAZCA-16A	Alternate Alternate									
202NAZCA-17A	Primary	1237		YES						
202PAN-2A 202SEPAC-10A	Primary Alternate	1240		YES						
202SEPAC-13B	Primary	1234		YES						
202SEPAC-14C 202SEPAC-19A	Primary Alternate	1235 1233		YES YES						Spectacular results!
	Alternate	1233								
202SEPAC-9A	Primary	1232		PARTI AL						Turbidites reduced core quality
202021 40-04	Thindry	12.52								20 in. x 10-3/4 in. casing, set Cmt at 4081 mbrf,
203OSN-2	Primary	1243		YES						cmt bond & inclination log. Logged triple combo, FMS, and WST.
204HR-1A	Primary	1244								
204HR-1B 204HR-1C	Alternate Alternate	1246								
204HR-2	Alternate									
204HR-2ALT 204HR-2ALTB	Primary Alternate	1251								
204HR-3A	Primary	1245								
204HR-4A 204HR-4B	Primary Primary	1250 1249						-		
204HR-4C	Primary	1247								
204HR-5A 204HR-6	Alternate Alternate	1252 1248		YES						
2051039R	Alternate	1240								
										Basement not reached, hole TD ended in thick gabbro sill, CORK-II installation completed,
00540005	Driver			PARTI						setting go-devil stuck in DP, packer not set, spoo
2051039R-A 2051040R	Primary Alternate	1253		AL						valves not actuated
				PARTI						Allotted time expired. CORK-II installation
2051040R-A	Primary			AL						successfully completed. Drilling problems. Cores collected through
										decollement. Hole 1254A abandoned due to collapsed 10-3/4 in. casing. Hole 1254B
				PARTI						abandoned due to CORK-II 4-1/2 in. casing
2051040R-B 2051040R-C	Primary Alternate	1254		AL NO						parting below wellhead. Substituted by alternate Site 1043R-A.
2051040R-D	Alternate									Substituted by alternate one 1043R-A.
2051043R	Alternate	1255		YES				-		COPK-II installation sussessfully complete d
2051043R-A 206GUATB-01A	Alternate Alternate	1255		169					<u> </u>	CORK-II installation successfully completed.
206GUATB-03A	Alternate									
	Alternate Primary	1256								1
207DR-1B	Alternate			NIC						
207DR-2 207DR-3	Primary Alternate			NO				-		1
207DR-3C	Primary	1258		YES				-		
207DR-4B 207DR-5B	Alternate Primary	1259		YES						
207DR-6B	Alternate									
207DR-6C 207DR-7B	Alternate Alternate	1261		YES						
207DR-8B	Primary	1257		YES						
	Added Alternate	1260		YES						
208WALV-10B	Alternate								<u> </u>	
208WALV-10C 208WALV-10D	Primary Alternate									
208WALV-10F	Added	1266		YES						Substituted for WALV-10C
	Alternate									

1				SUCC				Logge		
LEG	PRECRUISE NAME	SITE PRIORITY	SITE		# Holes	OPS	Depth		Objective	SITE_COMMENT
208	WALV-11B	Primary	1267	YES						
208	WALV-11C	Alternate								
208	WALV-11D	Alternate								
208	WALV-12A	Primary	1262	YES						
208	WALV-12B	Alternate								
208	WALV-12C	Alternate								
208	WALV-13B	Alternate								
		Alternate	1264	YES						Substituted for WALV-8B
		Primary								
		Alternate								
208	WALV-8E	Added	1263	YES						
		Primary								
		Alternate	1265	YES						Substituted for WALV-9A
209	MAR-1N	Primary								
		Primary								
		Primary								
		Primary								
		Primary								
209	MAR-3S	Primary								
		Primary								
		Alternate								
		Alternate								
		Alternate								
		Alternate								
		Primary								
		Alternate								
		Alternate								
		Alternate								
		Alternate								
210	NNB-05A	Alternate								
210	NNB-06B	Alternate								