Drilling Program

IODP Expedition 343 Japan Trench Fast Earthquake Drilling Project (JFAST)

CDEX Technical Report Volume 16 February 2012

Center for Deep Earth Exploration

Japan Agency for Marine-Earth Science Technology

Published by:

The Center for Deep Earth Exploration Japan Agency for Marine-Earth Science and Technology 3175-25 Showa-machi, Kanazawa-ku, Yokohama Kanagawa 237-0061 JAPAN

© The Center for Deep Earth Exploration February 2012

Drilling Program

IODP Expedition 343 Japan Trench Fast Earthquake Drilling Project (JFAST)

February, 2011

CDEX, JAMSTEC

Prepared by	
Drilling Superintendent	Operations Geologist
5 1	
Date:	Date:
Approval	
Drilling Operations Group Leader	Geological Evaluation Group Leader
Date:	Date:
Dale.	Dale.
Operations Director	Deputy Director General
[Needs signatu	nae haral
୍ରା <u>କ</u> ୋଇ ଆଧାରଣ ଆଧାରଣ କାର୍ଯ୍ୟ କାରଣ କାରଣ କାରଣ କାରଣ କାରଣ କାରଣ କାରଣ କାରଣ	כס ווכו כן
	_
Date:	Date
Director General	
Date:	

Table of Contents

1. Health, Safty and Environment 1
2. Scientific Objective3
3. Site and Geology5 3.1. Location
3.2. Geological backgraund
3.3. Geological prognosis7
4. Expedition Summary and Schedule 19
4.1. Expedition Summary19
4.2. Expedition Schedule19
4.3. Drilling Time Depth Chart20
4.4. Hole Summary21
5. Pressure and Temperature Prediction
5.1. Pressure Prediction
5.2. Temperature Prediction23
6. Drilling Summary24
6.1. Well Plan Check List24
6.2. Drilling Chronologyt25
6.3. Drilling Sequence26
6.4. Drilling Program Summary27
6.5. Contingency Tree28
6.6. Hazard Assessment29
7. Deviation Survey Program31
8. Bit Program32
9. BHA Program
10 Drilling Fluid (Mud) Drogram 20
10. Drilling Fluid (Mud) Program
10.1. Drilling Fluid Summary
10.2. Potential Hole Problem Summary
11. Casing Program40
11.1. Casing Program40
11.2. Specification of Casing41
12. Hole Evaluation program42
12.1. LWD/MWD logging42
12.2. Decision tree42
12.3. Contungency plan42

13. Coring Program45
13.1. Coring Summary45
13.2. Typical Coring System Selection45
13.3. Comparison of ODP with OD-21 Coring System
13.4. Chikyu Coring System
13.5. Wireline Coring System Selection Guide 48
14. Wellhead and Completion49
14.1. Riserless Wellhead 49
14.2. Completion for proposed Hole A 51
14.3. Completion for proposed Hole B 53
15. Well Specific Operation Guideline
(WSOG)58 16. Typhoon Evacuation60
. ,
16. Typhoon Evacuation60
16. Typhoon Evacuation
16. Typhoon Evacuation 60 17. Service Subcontractors 61 Appendix 1. Chikyu Drillstring 62 Appendix 2. Specification and Capability of Chikyu 63
16. Typhoon Evacuation 60 17. Service Subcontractors 61 Appendix 1. Chikyu Drillstring 62 Appendix 2. Specification and Capability of Chikyu 63 Appendix 3. Improved Underwater TV System 64
16. Typhoon Evacuation 60 17. Service Subcontractors 61 Appendix 1. Chikyu Drillstring 62 Appendix 2. Specification and Capability of Chikyu 63 Appendix 3. Improved Underwater TV System 64 Appendix 4. Metocean Data 72
16. Typhoon Evacuation 60 17. Service Subcontractors 61 Appendix 1. Chikyu Drillstring 62 Appendix 2. Specification and Capability of Chikyu 63 Appendix 3. Improved Underwater TV System 64 Appendix 4. Metocean Data 72 Appendix 5. Offset Well Summary 74
16. Typhoon Evacuation 60 17. Service Subcontractors 61 Appendix 1. Chikyu Drillstring 62 Appendix 2. Specification and Capability of Chikyu 63 Appendix 3. Improved Underwater TV System 64 Appendix 4. Metocean Data 72 Appendix 5. Offset Well Summary 74 Appendix 6. Helicopter Spec 76
16. Typhoon Evacuation 60 17. Service Subcontractors 61 Appendix 1. Chikyu Drillstring 62 Appendix 2. Specification and Capability of Chikyu 63 Appendix 3. Improved Underwater TV System 64 Appendix 4. Metocean Data 72 Appendix 5. Offset Well Summary 74

Health, Safety and Environment (HSE)

All CDEX operations shall be conducted with detailed consideration of Health, Safety and Environment (HSE) aspects. Along with the CDEX HSE Policy, the CDEX HSE Management System (HSE-MS) will be adopted for the entire period of this expedition including its' planning and follow-up stages.

Day-to-day marine and drilling operations, and science operations will be carried out by Mantle Quest Japan Co. Ltd. (MQJ), and by Marine Works Japan (MWJ) Co. Ltd., respectively. CDEX will ensure by means of regular communication and reporting that their HSE-MS maintain CDEX HSE standards.

1. Emergency Response Plan

CDEX will manage emergency situations based on the JAMSTEC Incident /Trouble Response Guidelines document. CDEX will also develop a detailed expedition-specific Emergency Response Plan (HSE-MP-001 Emergency Response Plan), which specifies the functions and responsibilities of the Emergency Response Team.

2. Expedition-specific HSE concerns

• Ultra-deepwater drilling

IODP Expedition 343 will be drilling in 7,000 m of water, a first experience for D/V Chikyu. Moreover, globally, there are very few comparable examples of such ultra-deepwater drilling. We are conducting a full risk-assessment in regard to ultra-deepwater operations and will take all necessary measures to mitigate the risk.

· Radiation exposure from Fukushima-I Power Plant

The Fukushima-I Nuclear Power Plant (Tokyo Electric Power Company) accident in March 2011 released a large amount of radioactive materials over a large area of eastern Japan. The drilling site and the logistic base for Expedition 343 are located about 150 km northeast and 100 km north of the power plant, respectively. A risk assessment conducted in regard to radiation exposure from the Fukushima-I Power Plant concluded that as the sites are at a large enough distance from the reactor site, and that the nuclear reactors themselves are relatively stable, the risk of radiation exposure is generally low. However, there may still be some increased risk during the disaster recovery processes, with associated increases in mental stress for personnel on board Chikyu. To closely monitor this situation, we will conduct the following measures: 1) information collection and distribution, 2) dose monitoring (on board and logistic base), 3) establishment of emergency escape procedures, and 4) education about radiation and how to protect yourself from it.

3. HSE performance monitoring

CDEX will review the Contractor's HSE performance during the expedition in reference to the below lead and lag indicators.

Lead indicators:

- Number of HUNS submitted,
- Number of safety meetings and its participation rate,
- Drills and trainings performed,
- Newly introduced or improved safety systems (e.g. rules, procedures, and equipments).

Lag indicators:

• Number of incidents.

In addition to the above indicators, on board scientists' review will be utilized to evaluate HSE performance of CDEX and the Contractors.

4. HSE audit

CDEX will conduct an audit to verify the effectiveness of the HSE-MS, as well as HSE management of critical activities when necessary. The scope of audit covers the Contractor's office and a logistic base as well as on board facilities.

JAMSTEC
Health, Safety & Environment Policy
The Center for Deep Earth Exploration (CDEX) is committed to preventing injuries and protecting the environment for safe and efficient operations by our Deep Sea Drilling Vessel, Chikyu. It is our aim to comply with and, where practicable, exceed the requirements of applicable HSE legislation, Standards, Guidelines and Codes.
CDEX's management will define and document HSE policies and strategic objectives.
This will be done for:
 Safety and health goals for CDEX and contractor personnel;
 Ensuring environmental goals for marine, drilling and science services activities;
 Operating and maintaining Facilities so that the risk to personnel is as low as reasonably practicable;
 Training to meet project, operational and regulatory requirements.
CDEX believes that this can be achieved while meeting its quality objectives and goals with the cooperation of contracting parties.
To do this, we will:
 Provide HSE Leadership & Commitment throughout our operations;
 Seek out and evaluate best practice HSE Planning strategies;
 Develop effective HSE Implementation processes.
To measure and evaluate our success in achieving these goals, we will:
 Clarify and develop comprehensive Auditing and Review systems;
 Set targets that encourage us to continuously measure, evaluate and improve our HSE performance;
 Include HSE performance in performance appraisals;
 Communicate the requirements of this policy throughout all levels of the organization.
It is our commitment to achieve all stated goals and objectives by seeking out, evaluating and, where practicable, implementing best HSE Management practices.
Dr. Wataru Azuma Director General of Center for Deep Earth Exploration
August 2011

2. Scientific Objectives

The science objectives are closely aligned with the overall goals of IODP. In the IODP Initial Science Plan, research concerning solid earth cycles and geodynamics high- lights the seismogenic zone initiative, which advocates subduction zone studies that include investigating the behavior of rocks and sediments to better understand the fault zone and integration with studies of earthquake mechanics. Deformation micro- structures and physical rock properties at in situ conditions, along with observatory monitoring of temperature, pore pressure, and stress, are also emphasized in the plan. These are all key components of the Japan Trench Fast Earthquake Drilling Project (JFAST). Furthermore, JFAST directly addresses Challenge 12 of the IODP Science Plan for 2013–2023: "What mechanisms control the occurrence of destructive earth-quakes, landslides, and tsunami?"

The prioritization of science objectives reflects the unique possibilities provided by rapid response drilling into a slipped fault following an earthquake. The shallow distribution of large slip for the Tohoku earthquake provides an unprecedented ability to directly access a fault that has recently moved tens of meters. As outlined in the report from the International Continental Scientific Drilling Program/Southern California Earthquake Center international workshop on rapid response drilling (Brodsky et al., 2009), fundamental questions regarding stress, faulting-related fluid flow, and the structural and mechanical characteristics of the earthquake rupture zone can be addressed uniquely through rapid response drilling.

Specifically, the science objectives and strategies for achieving them are as follows:

What was the stress state on the fault that controls rupture during the earth- quake and was the stress completely released?

• Dynamic friction during the rupture: potentially the most significant result of this project will be a value for the dynamic frictional stress. Time decaying temperature measurements will be used to estimate the frictional heat produced at the time of the earthquake, which can be used to infer the level of dynamic friction.

• Rupture to the toe of the accretionary wedge: past thinking was that sediments in this region are weak and rate strengthening, so earthquake instability should not nucleate or easily propagate through this region. Measurements of current stress and stress during the earthquake can be used to explore different models to explain how dynamic slip occurred. Hydrogeological measurements can constrain the healing of the fault.

What are the characteristics of large earthquakes in the fault zone, and how can we distinguish present and past events in fault zone cores?

• Core analyses: detailed analyses of textures and small-scale structures of core samples of the fault zone will be used to infer the role of fluids and pressurization during rupture. We will look for evidence of melting and other processes that contribute to dynamic strength reduction. Trace elements will be used to estimate the thermal history of the recent and past events.

• Laboratory experiments: high-speed friction and petrophysical experiments on fault material can be used to characterize the frictional behavior of the fault.

Secondary science objectives include carrying out other geological, geochemical, and microbiological observations to the greatest extent possible during drilling in accordance with the IODP Measurements document (www.iodp.org/ program-policies/). As a specific example, there is some evidence that great amounts of hydrogen may be released

at the time of large faulting (e.g., Kita et al., 1982). The massive amounts of hydrogen may greatly stimulate microbiological activity; thus, samples of the fault may contain records of biogeochemical and microbiological processes.

3. Drill Site and Geology

3.1. Location

The primary and alternate drill sites of IODP Expedition 343, JFAST-3 and JFAST-4, are located on the lower landward slope of the Japan Trench, 7000 m water depth, 250 km off the Pacific Coast of Sendai City and 100 km ESE from the epicenter of the 2011 Tohoku Earthquake (11 March 2011) to the east-southeast (Fig. 2). These sites are targeted for reaching the décollement along which the huge seismic slip up to 50 m in horizontal displacement is presumably yielded at the main slip of the earthquake. In order to get hold of the décollement at an operationally feasible water depth and a reasonable penetration depth, the primary and the alternate drill sites were chosen from locations satisfying the following requirements: the water depth is 7000 m or less, the décollement depth is less than 1000 m, and multi-channel seismic (MCS) profiles of crossed lines are available. Besides the two sites, four additional contingency operation sites (JFAST-5, JFAST-6, JFAST-7 and JFAST-8) are available, chosen from the upper landward trench slope near ODP Site 1151, middle landward trench slope, lower landward trench slope and the upper seaward trench slope, respectively. Each site is summarized in Table 1.

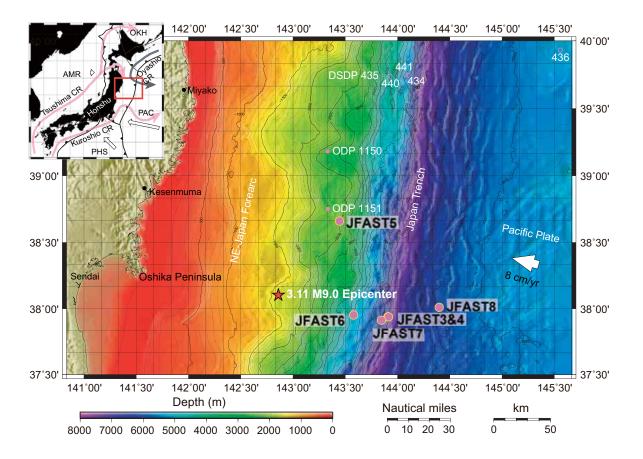


Figure 2. Regional bathymetry map showing the IODP Expedition 343 drill sites. The JFAST drill sites and ODP and DSDP drill sites are shown with large pink circles and small pink circles, respectively. The red star indicates the epicenter of the 2011 Tohoku Earthquake. The inset figure shows the general tectonic background of the Japanese island arc and major sea currents.

Table 1. Summary of the primary and alternate drill sites.

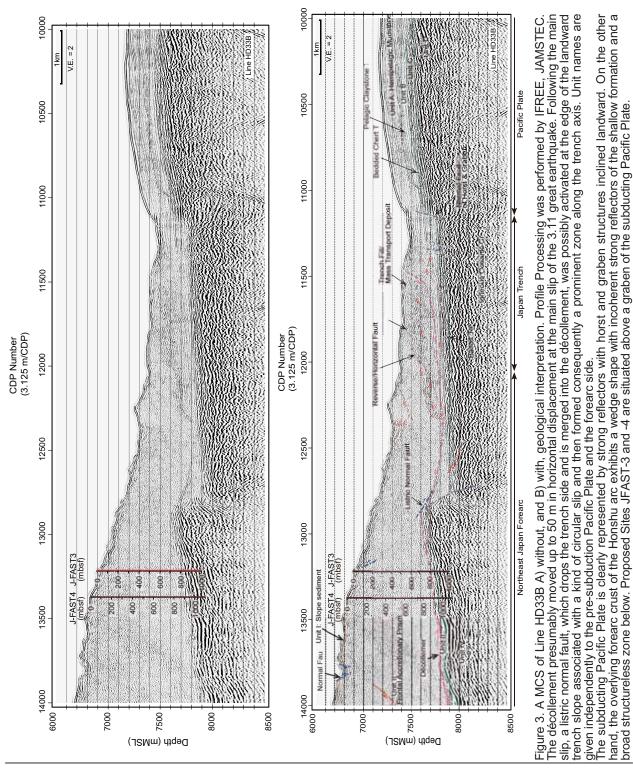
Expedition Number		343				
Expedition Name		Japan Trench Fast Dr	illing Project			
Site	JF/	AST3	JFAS ⁻	T4		
Hole	А	В	А	В		
Coordinates	37°56	.3022'N	37°56.35	528'N		
Coordinates	143°5	4.8405'E	143°54.5	075'E		
Water Depth	69	10 m	6830 m			
Dreneged Tetal Donth	1000) mbsf	1100 mbsf			
Proposed Total Depth	7938.	5 mBRT	7958.5 mBRT			
		Drilling Caring	MWD-LWD,	Drilling, Coring,		
Main Operations	MWD-LWD,	Drilling, Coring,	CSG and	CSG and		
	CSG and Observatory	CSG and Observatory	Observatory	Observatory		
Geological Setting		Lower landward tre	ench slope			
Remarks	Prima	ary site	Alternate	e site		

Table 2. Summary of contingency drill sites.

Expedition Number		34	3							
Expedition Name	Japan Trench Fast Drilling Project									
Site	JFAST5	JFAST6	JFAST7	JFAST8						
Hole	-	-	-	-						
Coordinates	38°39.6664'N	37°57.1644'N	37°54.7748'N	37°00.6244'N						
Coordinates	143°26.7087'E	143°34.8404'E	143°50.8337'E	144°23.9456'E						
Water Depth	2450 m	5240 m	6500 m	5940 m						
Bronocod Total Donth	1000 mbsf	750 mbsf	1000 mbsf	350 mbsf						
Proposed Total Depth	3478.5 mBRT	6018.5 mBRT	7528,5 mBRT	6318.5 mBRT						
	MWD-LWD,	Drilling, Coring,	MWD-LWD,	Drilling, Coring,						
Main Operations	CSG and	CSG and	CSG and	CSG and						
	Observatory	Observatory	Observatory	Observatory						
	Upper landward		Lower landward	Upper seaward						
Geological Setting	trench slope (near	Middle landward	trench slope (near							
.	ODP site 1151)	trench slope	JFAST1)	(Pacific Plate)						
Remarks		Contingency site								

3.2. Geological Background

The subduction zone along the Japan Trench is where the Pacific plate (early Cretaceous) is subducting under Japan at about 8 cm/year (National Geographical Data Center, 1996) (Fig. 2). The Northeast Japan forearc along this subduction zone is a typical forearc dominated by tectonic erosion compared to the Nankai Trough, which is a typical accretionary subduction zone (ex. von Huene et al. 1994). The accretionary belt along the Japan Trench is only developed near the trench axis on a small scale.


The present Northeast Japan forearc basin has been developed since the regional subsidence that began from the latest Oligocene and ended in the Pliocene, associated with tectonic erosion of the preexisting accretionary complex and the igneous basement. Prior to development of the present forearc, the preexisting formations of the Mesozoic to the early Paleogene uplifted and emerged above the sea in the past forearc region during the early Paleogene. A broad regional unconformity developed in the Northeast Japan forearc during this period. The forearc then began to subside in the latest Oligocene coincident with the resumption of the Pacific Plate subduction and was submerged by the late Miocene. In the late Pliocene regional uplift began, possibly in association with a

change from extensional to compressional tectonics (von Huene et al., 1982).

3.3. Geological Prognosis

3.3.1. Overview of seismic profiles and lithological correlation

A MCS profile of pre-stack time migration with depth conversion perpendicular to and across the trench axis is shown in Fig. 3, with interpretation in the light of the tectonic background for geological prognosis of the drill sites. A local bathymetry map with indicating MCS survey lines is shown in Fig. 4.

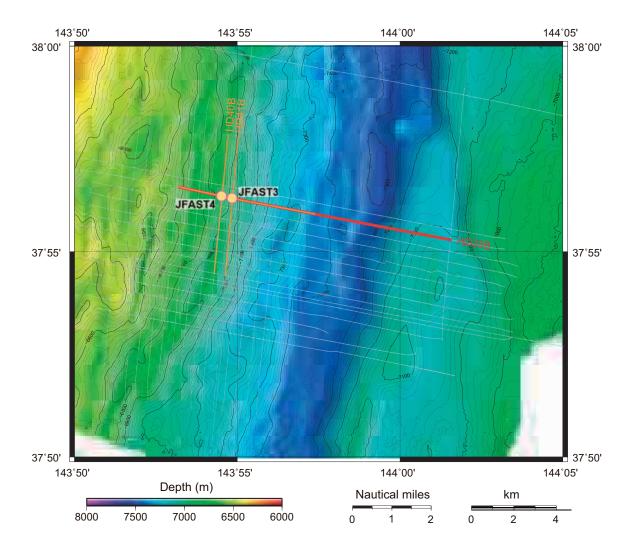


Figure 4. A close-up bathymetry map of Proposed Sites JFAST-3 and -4. Yellow circles represent the drill sites, and white lines show the MCS survey lines. The extent of the line corresponding to Fig. 3 is indicated by a thick red line and those corresponding to Figs. 5, 6 and 7 are indicated by thick orange lines.

1) Pacific Plate

In the strong reflector zone with horst and graben structure of the Pacific Plate, the strongest reflector is situated in the upper middle of the zone (upper Unit D) while the upper reflectors above it show stratification with relatively finer frequency (Unit C). Besides, a stratified weak reflector zone (Unit B) overlies the strong reflector zone. The upper part of the Pacific Plate is comprised of well-stratified low amplitude layers (Unit A). Accordingly four major units can be recognized in the pre-subduction Pacific Plate: Units A, B, C, and D, in descending order. To correlate the seismic interpretation with lithology, data from DSDP Hole 436 (Shipboard Scientific Party, 1980a), drilled on the Pacific Plate off Sanriku coast (280 km to the northeast of the JFAST site), and a representative lithostratigraphy of an accreted oceanic crust on land (e.g. Taira et al., 1988) were used to give a referential lithostratigraphy of the subducting plate. Unit C probably corresponds to bedded chert and consequently the middle strongest reflector, the top of Unit D, can be correlated with the top of the basaltic crust. Major components of Unit B and A are probably pelagic claystone and hemipelagic mudstone to mud, respectively. The boundary between Unit B and C must correspond to the top of opal-CT zone.

In the subducting Pacific Plate below the forearc wedge, Unit III and IV correspond to Unit C and D, respectively. In other words, the forearc wedge formation contacts the subducting bedded chert through the décollement and the

formations above (Unit A and B) are scraped off at the trench.

2) Forearc wedge

The overlying forearc wedge, contrastingly, has no obvious structure except the uppermost formation (Unit I). Referable offset well data is available from DSDP Holes 434 and 441 (Shipboard Scientific Party, 1980b, 1980c), which were drilled in a similar setting, the lower landward trench slope, 210 km to the north of the proposed JFAST Sites, in about 6000 m and 5250 m water depth, down to about 640 mbsf and 400 mbsf, respectively. From the results of these holes, it is possible that the forearc wedge formations (upper Unit II) are mainly composed of diatomaceous clay to claystone with intercalations of volcanic ash to tuff and tuffaceous mudstone, with locally contained, isolated pebbles. Biostratigraphic data of Hole 434, however, shows that there is repetition of formations which indicate similar ranges of age, at least in the upper 300 m, suggesting that reworked blocks from landslides or displaced blocks from faulting constitute the upper part of the forearc wedge. Lower Unit II may be composed of accreted diatomaceous and radiolarian mudstones which used to be sediments on the Pacific Plate, even though there is no direct lithological evidence. In addition, the structureless feature of the forearc wedge implies the overall fragileness of the formation.

3) Décollement and related fault systems

The décollement in the forearc wedge is not clearly seen in the seismic profile; however, we assume that it's situated immediately above a horst of the subducting oceanic crust (including bedded chert) where an abrupt physical property change is expected. On the other hand, a very clear reflector definitely corresponding to a part of the décollement is recognizable to the east of the Proposed Drill sites, appearing from the edge of the horst then extending across the wedge above the graben. Furthermore, a listric normal fault appears to drop along the trench side before being merged into the décollement is also likely to exist in the immediate east of the drill sites. This fault apparently cuts a branch of the décollement. The listric normal fault was possibly activated at the edge of the landward trench slope associated with a kind of circular slip shortly subsequent to the main slip of the décollement. In the trench axis area, a reverse fault system with a kind of piggy-back structure similar to that of typical accretionary prisms like the Nankai Trough area is developed, cutting the sedimentary formations above the basaltic crust.

3.3.2. Lithological Prognosis for Proposed Sites JFAST-3 and -4

Close-ups of the MCS profiles around Proposed Sites JFAST-3 and -4 are shown in Figs. 5, 6, and 7. In accordance with the lithological correlation and the identification of the décollement as described above, proposed lithology columns for JFAST-3 and -4 are described (Figs. 8, 9). The uppermost part, Unit I, 20 – 60 m thick, is slope sediment consisting of diatomaceous clay, possibly landslide derived. Unit II, the main part of the forearc wedge, is the frontal accretionary prism, likely composed of diatomaceous and radiolarian clays to claystones, Pleistocene to early Miocene in age, with possibly interbeds of landslide deposits. Thickness of the unit is estimated at 740 to 880 m. The décollement is conceivably situated at 800 mbsf and 900 mbsf in Proposed Sites JFAST-3 and -4, respectively. However, there is no reliable information to determine the fracture zone thickness. Unit III below the décollement, might be a bedded chert formation 50 m thick consisting of alternating chert and porcellanite layers, early Miocene to early Cretaceous. Unit IV is identified as basaltic basement, comprised of pillow lava with subordinate hyaloclasite of the early Cretaceous.

Based on the velocity model made by IFREE, slowness estimation by JAMSTEC shows that the formations get harder abruptly at the décollement and below (Figs. 10, 11). However, the velocity model is necessarily uncertain, especially in the forearc wedge, due to the lack of seismic features to improve the velocity structure in the wedge. Therefore, the depth for each boundary shown here might considerably deviate from the actual situation.

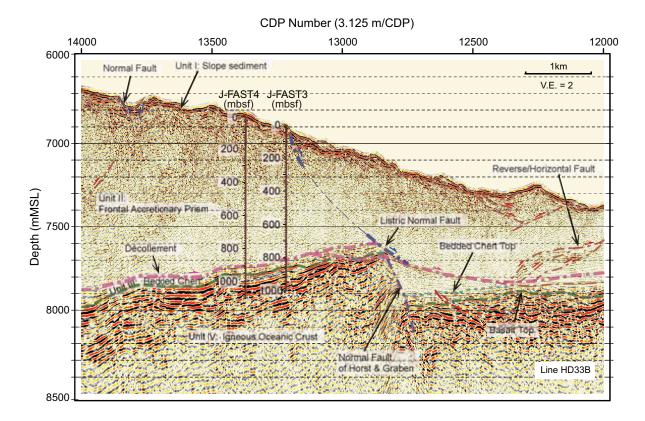
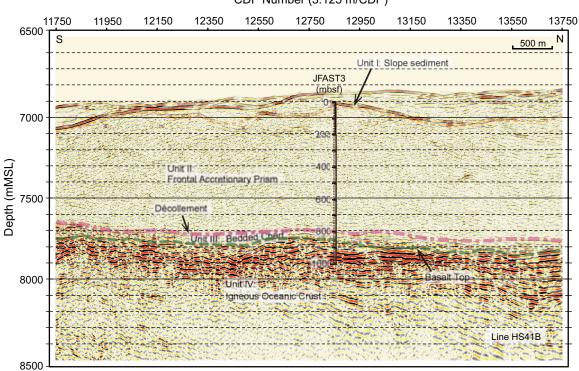



Figure 5. MCS profile of Seismic Line HD33B with a geological interpretation. The extent of the line of this figure is shown in Fig. F3.3.

CDP Number (3.125 m/CDP)

Figure 6. MCS profile of Seismic Line HS41B with a geological interpretation. The extent of the line of this figure is show in Fig. F3.3.

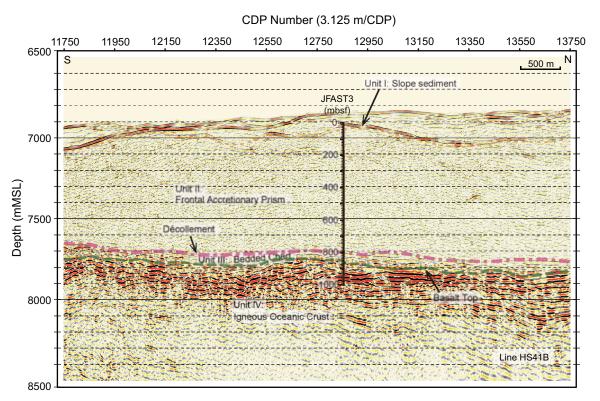
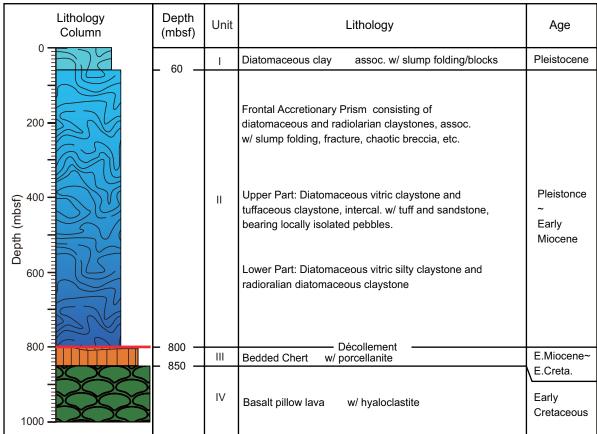
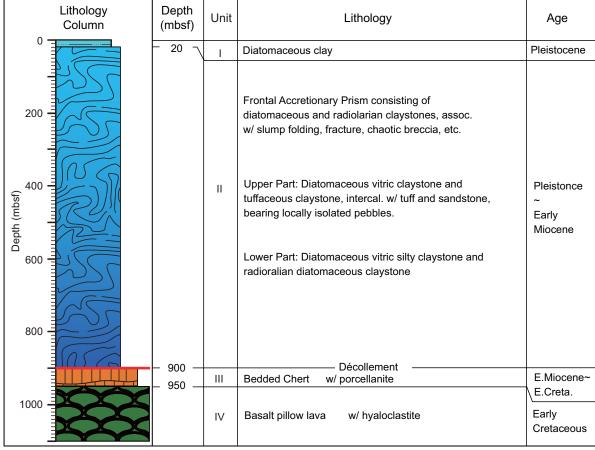



Figure 7. MCS profile of Seismic Line HS40B with a geological interpretation. The extent of the line of this figure is shown in Fig. F3.3. Horizons correlated to the décollement and basalt top are apparently 20-30 m deeper than those identified on the profile of Line HD33B.



WD = 6910 m

Figure 8. Lithological prognosis for Proposed Site JFAST-3. The depth scale is based on the latest velocity analysis done by IFREE, JAMSTEC. The velocity estimation, however, has a measure of uncertainty due to lack of obvious structure in the forearc wedge.

WD = 6830 m

TD = 1100 mbsf

Figure 9. Lithological prognosis for Proposed Site JFAST-4. See the caption of Fig. 5.

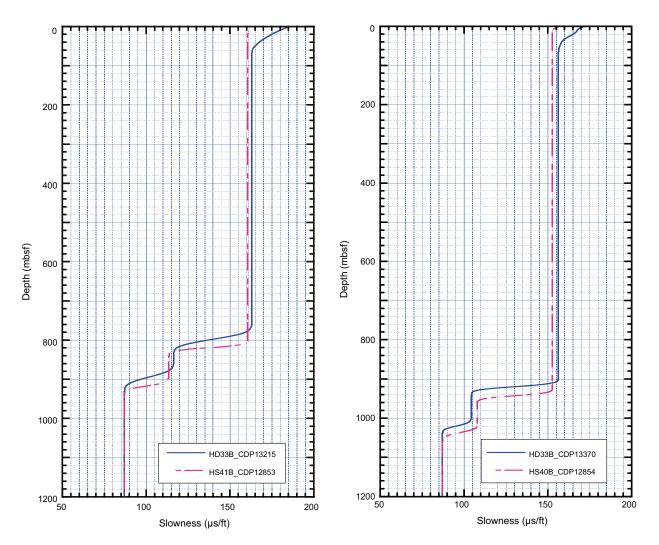


Figure 10. (Left) A plot of slowness vs. depth for Proposed Site JFAST-3. See the caption of Fig. 5. Figure 11. (Right) A plot of slowness vs. depth for Proposed Site JFAST-4. See the caption of Fig. 5

3.3.3. Potential Geological Hazards of Proposed Sites JFAST-3 and -4

Shallow Hazard

Shallow hazardous features that potentially affect wellhead installation and subsequent stability of the wellhead and safety drilling include free gas (hydrocarbon gases) and water flow in the shallow formation, extremely soft or hard seafloor, and rough topography.

The seismic profiles around the drill sites show no obvious structures in the formations above the expected décollement besides the shallowest portion immediately below the seafloor (Figs. 3, 5, and 6). There are, thus, no features that suggest potential free gas, water flow, hydrocarbon trap or hydrate zones, such as high-amplitude reflectors or those with reversal polarity.

On the other hand, we have great uncertainty about the seafloor condition, since no detailed topographic data, backscattering data nor core samples around the sites are available. As modestly suggestive information about the seafloor hardness, the shallowest formation is relatively firm at DSDP Site 434, indicated by the shear strength and bulk density data. Nevertheless there is no data to deny presence of thick squashy mud lying on the seafloor. In addition, rough topography and/or boulders of mudstone yielded by landslide are of potential concerns.

Deep Hazard

The seismic profiles which image no obvious structure in the most part of the forearc wedge are suggestive of friable properties of the formations due to extensive shearing and fracturing yielded by the last and historical earthquakes (Figs. 3, 5, and 6). In addition, lower degree of compaction of the formations and a compressional regional stress field that may have been already restored result in lower foundation strength of the formations. Operational problems were experienced at DSDP Hole 434B. They left BHA and about 150 m of drill pipes in the hole after retrieving efforts for 16 hours.

Below the décollement, harder formations (bedded chert and the basaltic crust) are expected to underlie. They are conceivably much more abrasive than the formations above, even though being friable due to horizontal shearing.

No obvious features implying abnormally pressurized fluid are observed along either the décollement or the branch faults at least on the seismic profiles. The décollement, however, is possibly still active, having a potential to cause afterslip in some measure (up to 35 cm at a worst estimation).

The drill site area has low potential in large accumulation of hydrocarbon in view of its tectonic setting. Indeed no seismic features suggesting occurrence of hydrocarbon are observed in the deeper part.

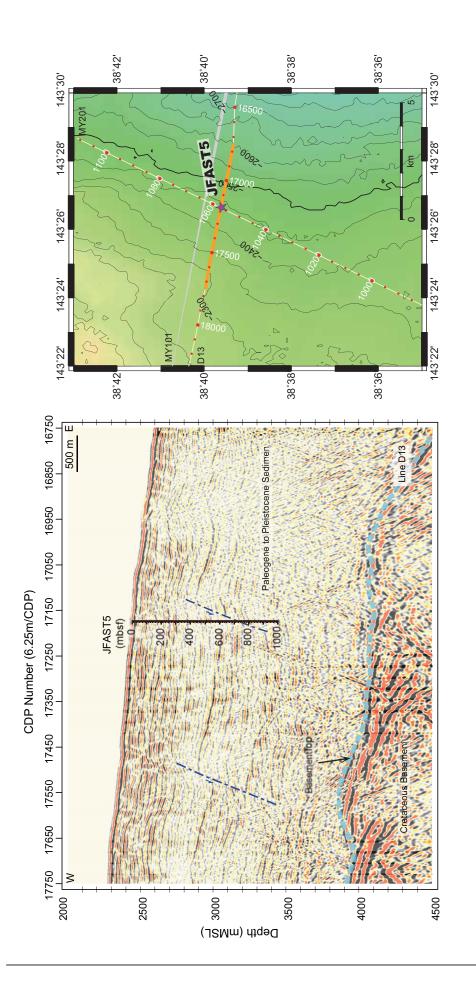
3.3.4. Contingency Sites

The locations of the contingency sites are shown in Fig. F3.1. MCS lines and profiles passing each site perpendicular to the trench axis are shown in Figs. F12, F13, F14, and F15.

JFAST-5

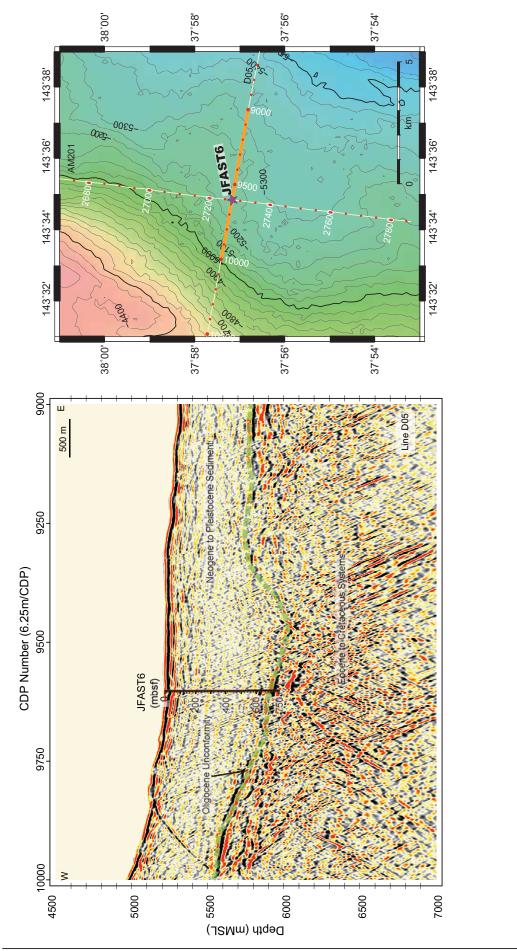
This location is close to the ODP Site 1151 (Sacks et al., 2000), on a gentle smooth slope of the lower trench slope. The seismic profiles show that the formations to be drilled have clear stratification, cut by some normal faults, correlating with the formations of ODP Site 1151 (Fig.12). No operational problem owing to any shallow hazardous factors was experienced during the ODP operations.

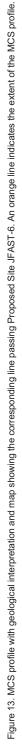
JFAST-6

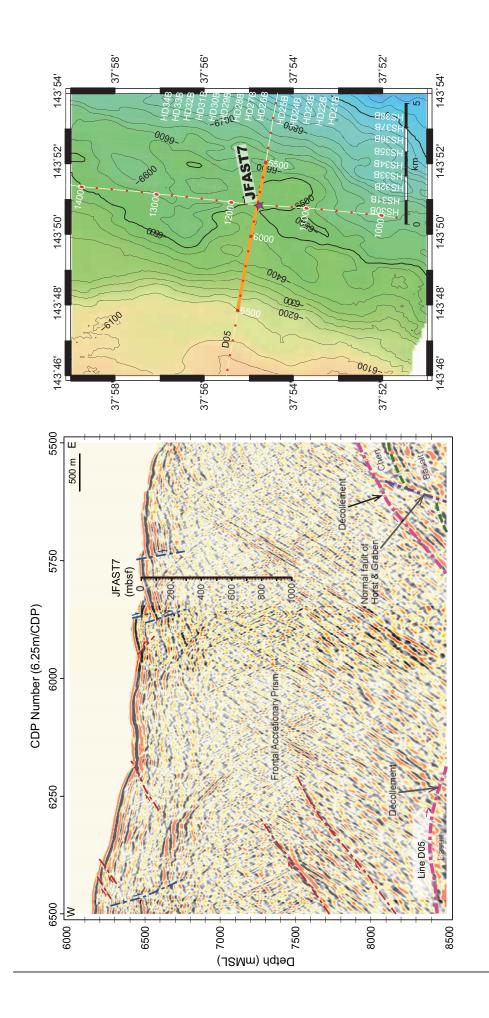

This location is on a gentle smooth slope of the middle trench slope. The formations to be drilled are expected to be of younger forearc sediments overlying unconformably the pre-Oligocene systems, showing vague stratification, probably correlated with the formations of ODP Site 1151 (Fig. 13 No shallow hazardous features are noticeable.

JFAST-7

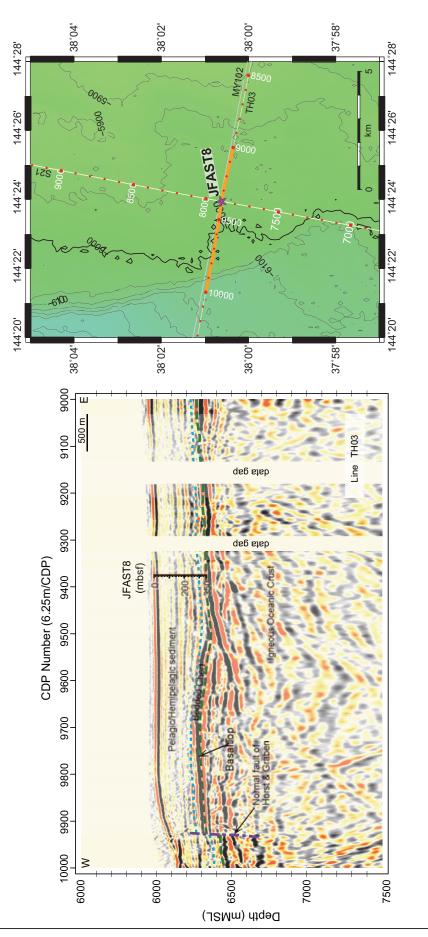
This site is situated at the almost same setting to JFAST-3 and -4. Similar lithologies and hazards are expected (Fig. 14).


JFAST-8


This location is on a flat plain of the Pacific Plate where hemipelagic to pelagic sediments, characterized by finely well-stratified seismic reflectors, are accumulated on the basaltic crust (Fig. 15). No shallow hazardous features are noticeable.



15



CDEX Technical Report Vol.16 Drilling Program

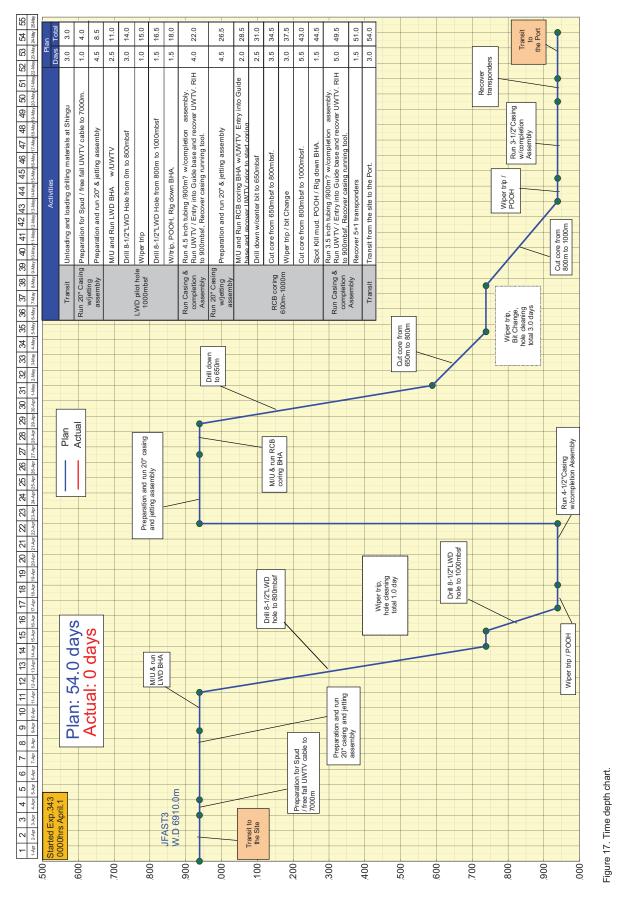
17

Figure 14. MCS profile with geological interpretation and map showing the corresponding line passing Proposed Site JFAST-7. An orange line indicates the extent of the MCS profile.

CDEX Technical Report Vol.16 Drilling Program

4. Operation Summary and Schedule

4.1 Expedition Summary (Expedition 343)


Table 3. Expedition summary table.

Hole Name	Operation	Water Depth (m)	Target Depth (mbsf)	CSG Depth (mbsf)	Ope. days		
Loading Materia	ls at Shimizu						
Move to JFAST	3				3	4/1/2012	
JFAST3	Riserless LWD Hole	6910	1000	4-1/2"	19	4/4 ~ 4/22	
Hole A	Observatory Hole	0310	1000	1000m	15	4/4 2 4/22	
JFAST# Hole B	Riserless Core Hole RCB	6910	1000	3-1/2"	29	4/23~ 5/21	
	Contingency 10		1000m	0			
Sail back to Shir				1	3	5/22~ 5/24	

Task	Days	Start	End	2011 Dec	Jan	Feb	2012 Mar	Apr	May
Standby Sri Lanka	13	16 Dec	28 Dec						
Transit to Shimizu	28	29 Dec	25 Jan						
Portcall Shimizu - CDEX	11	26 Jan	5 Feb						
JOGMEC	45	9 Feb	24 Mar						
Portcall in Shimizu	3	9 Feb	11 Feb						
Operations - JOGMEC	34	11 Feb	16 Mar						
Portcall - Offloading	2	17 Mar	18 Mar						
Contingency	6	19 Mar	24 Mar						
Portcall Shimizu - JFAST	7	25 Mar	31Mar						
JFAST	54	1 Apr	24 May						
Move to Tohoku	3	1 Apr	3 Apr						
Operations - JFAST	48	4 Apr	21 May						
Move to Shimizu	3	22 May	24 May						•
Portcall Shimizu - Offloading	1	25 May	25 May						•
Dock - Sasebo	29	26 May	23 Jun						

Figure 16. Expedition schedule.

4.3 Drilling time depth chart

4.4 Hole summary

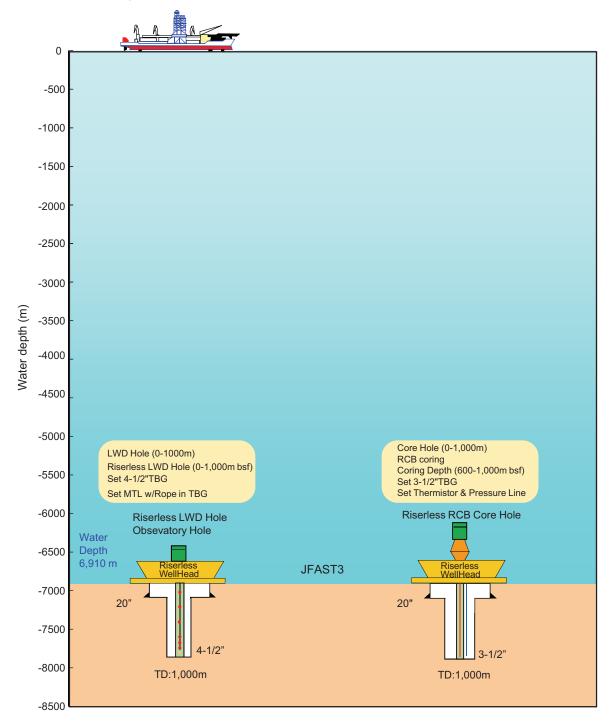


Figure 18. Hole summary for Exp.343

5. Pressure and Temperature Prediction

5.1 Pressure Prediction

The below diagram (Fig.19) was made using IFREE's velocity model from October 2011. The seismic data used is near the Proposed JFAST Sites. Constant velocity in the forearc wedge indicates a normal pressure gradient. The drastic increase of seismic velocity at the boundary between the forearc wedge and the subducting Pacific Plate seen may indicate a lithological change, rather than an increase in formation pressure.

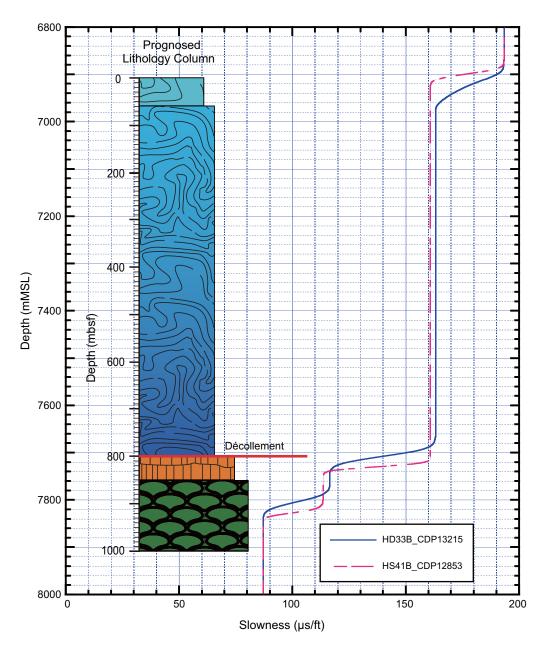
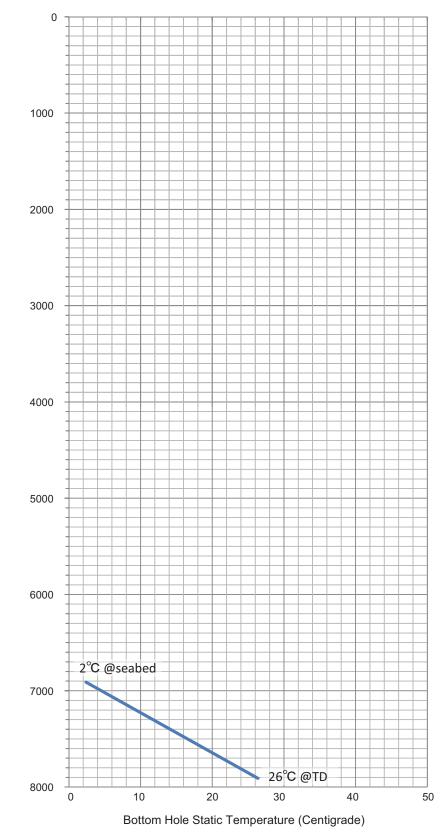



Figure 19. Pressure prediction.

5.2 Temperature Prediction

Figure 20. Temperature prediction

6. Drilling Summary

6.1 Well Plan Check List

Site Name	JFAST3	(C0019)		Nick Name	JFAST	Expeditio n No.	343		Riser / Riserless	Riserless	Location :	Off Miyag	i				CDEX D	rilling Operation Gr.	
			Scientific Ta	arget			Proposed T	otal Depth			l Prognosis	8		Geographical	Deviated We	al	01	set Well	
	Primary	Objectives			Second	ary Objectives	(mb	sf)	Formation	Depth (mbsf)	Expected	d Lithology	Location	Geographical	Information		On	set well	
							100							ll Head	TVD (m)				
							Water De		1 0-60		Diatomaceous clay to		Lat= 37°56.30	22'N	N/A				
							6,9 (ROV not A		· ·	0.00	clay	ystone	Lon= 143°54.8405'E X= 4202982.744		Dev (m)		DSDP Leg 56-57 (434, 435, 440, 441, 436) ODP Leg 186 (1151, 1152)		
							RT Eleva	ation (m)		60-800		aceous and			N/A				
							28.			00-000	radiolariar	n claystones	Y= 756083.2	7	KOP (m)				
							Proposed (day						UTM Zone :	54 N	N/A				
						19(LWD Hol 29(Coring H	le), iole)	1	800	Déco	ollement	Well	Bottom	Tangent Angle (deg)	Mud	1 Logging		
							AFE	Cost	ш	800-850		d chert w/ ellanite	Lat= 37°56.30 Lon= 143°54.1		N/A				
							Vertical or		IV	850~	Basalt pil	llow lava w/	X= 4202982		Direction				
							Verti				hyalo	oclastite	Y= 756083.2		MN			No	
				1			Susper Yes		-				UTM Zone :	54 N e Radius (m)	TN Mag. Declination	(doa)			
	1 st	Target			2	nd Target	Long Term							e Radius (m) e approved by	Mag. Decination	(ueg)			
at= 37°56				Lat =	-		Yes		1					PSP)					
on= 143°5				Lon =			Site Survey						rilling Hazard						
= 4202982.744 X=							🗹 Deep Se		Piston Core Shallow Sea Current Survey Hydrocan						ated Seabed Condition				
= 756083.27 Y=							Shallow Gide Sci					Hydroca		☑ Soft Se			ıdslide & Tu hane Hydrat	rbidity Current	
			VD (m) = 1000 TVD (m) =						✓ MetOcean Data Shallow Iei Riser Analysis Abnormal			w Water Flow				nane Hydrat			
201 (iii) - C	v (m) = 0 Dev (m) =						tom Profil	a	icor Analy	/eie		al Proceura				nir & Mud V	alcano		
	Allowable Radius (m) 100 m (to be approved by EPSP)			Dev (n		ble Radius (m)		tom Profil trv (Seafl			/sis		al Pressure de Obiects	✓ Fractur		🗌 Dia	pir & Mud V sh Temperatu		
100				Dev (n		ble Radius (m)	□ Bathyme ☑ Wellhea	try (Seafl d/Conducto	oor topogra	phy)		Abnorma Man-mac	de Objects	Fractur	ed Zone	🗌 Dia 🗌 Hig			
100				Dev (n		ble Radius (m)	Bathyme:	try (Seafl d/Conducto	oor topogra	phy)		Abnorma	de Objects	✓ Fractur ✓ Fault	ed Zone	🗌 Dia 🗌 Hig	h Temperatu		
TBG (in)			EPSP)	Mud MW		Potential Drilling Problems	□ Bathyme ☑ Wellhea	try (Seafl d/Conducto	oor topogra	phy) alysis)	Abnorma Abnorma Man-mac C02 Others Vireline Logg	de Objects H2S (Tyhoon)	✓ Fractur ✓ Fault	ed Zone p Angle	🗌 Dia 🗌 Hig	h Temperatu		
TBG (in)	m (to be ap Depth	Hole Size (Open Hole)	EPSP)	Mud	Allowal	Potential Drilling Problems	□ Bathyme ☑ Wellhear □ Others	try (Seafl d/Conducto (DIA Bit	oor topogra r Stress An	phy) alysis) Hole Size	Abnorms Man-mac C02 Others Vireline Logg	de Objects H2S (Tyhoon)	☑ Fractur ☑ Fault □ High Di	ed Zone p Angle Cem	Dia Hig Ice	h Temperatu Condition	re	Tem Pres Sur
TBG (in)	m (to be ap Depth (mbsf)	Hole Size (Open Hole)	* Seawater * Bentonite Hi-vis Pill for hole	Mud	Allowal	Potential Drilling Problems * Unstable hole conditions due to fractured rock. * Unstable sands beneath the frontal thrust	□ Bathyme ☑ Wellhear □ Others	try (Seafl d/Conducto (DIA Bit	oor topogra r Stress An	ohy) alysis //WD) Hole Size	Abnorms Man-mac C02 Others Vireline Logg	de Objects H2S (Tyhoon)	☑ Fractur ☑ Fault □ High Di	ed Zone p Angle Cem	Dia Hig Ice	h Temperatu Condition	re	
TBG (in) WD Hole	m (to be ap Depth (mbsf) to be Hole /	Hole Size (Open Hole) A) 8-1/2*	Type * Seawater * Bentonite Hi-vis Pill for	Mud	Allowal	Potential Drilling Problems * Unstable hole conditions due to fractured rock. * Unstable sands beneath the frontal	Bathyme: Wellheau Others	try (Seaf I d/Conducto (DIA Bit D/H Motor	oor topogra r Stress An LWD/I	ohy) alysis //WD) Hole Size (in)	Abnorma Man-max CO2 Others Vireline Logg	de Objects H2S (Tyhoon)	 ✓ Fractur ✓ Fault → High Di 	ed Zone p Angle Cem Slurry Type	Dia Hig Ice	condition	BHST/BHCT	
TBG (in) WD Hole	m (to be ap Depth (mbsf) to be Hole / 0-1000	Hole Size (Open Hole) A) 8-1/2*	* Seawater * Bentonite Hi-vis Pill for hole	Mud MW 1.03	Allowal	Potential Drilling Problems ¹ Unstable hole conditions due to fractured rock. ¹ Unstable sands beneath the frontal thrust. ² Overpressure in	Bathyme: Wellheau Others	try (Seaf I d/Conducto (DIA Bit D/H Motor	oor topogra r Stress An LWD/I	wwb alysis wwb cope- sion sion) Hole Size (in)	Abnorma Man-max CO2 Others Vireline Logg	de Objects H2S (Tyhoon) ing im /A /A	 ✓ Fractur ✓ Fault → High Di 	ed Zone p Angle Cem Slurry Type	Dia Hig Ice	condition	BHST/BHCT	

Site Mama	JFAST4			Nick	JFAST	Expeditio	343		Riser /	Riserless	Location	Off Miyag						2/February/2012 rilling Operation Gr.	
Site Ivallie	JFAS14	•		Name	JFAST	n No.	343		Riserless								CDEX D	ning operation of.	·
			Scientific T	arget			Proposed 1	otal Depth			I Prognosis				Deviated Well				
	Primary C	Objectives		Secondary Objectives			(mb	isf)	Formation	Depth (mbsf)	Expected	d Lithology	Location	n Geographical	Information		Off	set Well	
							1100 (+100)		(most)			W	ell Head	TVD (m)				
							Water D	epth (m)					Lat= 37°56.3528'N		N/A				
							6,8		1	0-20	clav	eous clay to stone	Lon= 143°54	0000	Dev (m)		DSDP Leg 56-57 (434, 435,		
							(ROV not										440, 441, 436	i)	
							RT Eleva	/		20-900		ceous and	X= 4,2030		N/A		ODP Leg 186	(1151, 1152)	
							28				radiolanar	n claystones	Y= 755592	.538	KOP (m)				
							Propose (da						UTM Zone	: 54 N	N/A				
							19(LWD Ho 29(Coring H	le),		900	Décol	llement	We	all Bottom	Tangent Angle (d	eg)	Muc	I Logging	
							AFE	Cost	ш	900-950		I chert w/ allanite	Lat= 37°56.3 Lon= 143°54		N/A				
							Vertical or	Deviated			Basalt nill	low lava w/	X= 4,2030		Direction				
							Vert	ical	IV	950~	hyalo		Y= 755592	.538	MN		1	No	
							Suspe						UTM Zone		TN		1	NO	
							Yes						Allowat	ole Radius (m)	Mag. Declination (deg)			
		arget			2 r	nd Target	Long Term						100 m (to	be approved by					
Lat= 37*56				Lat =			Yes				L	-		EPSP)					
Lon= 143°5 X= 4.2030				Lon = X=			Site Survey						illing Hazard			—			
X= 4,2030 Y= 755592				X= V=			Deep Se			iston Cor		Shallow			ated Seabed Condition				
	1000 (+100:	to be appro	wed by EPS		m) =								carbon 🗹 Soft Seabed ow Water Flow 🗌 Current				✓ Landslide & Turbidity Current ■ Nethane Hydrate		
Dev (m) = 0				Dev (m			Sub-bot			iser Anal		Abnorma				apir & Mud V			
		Radius (m)				ole Radius (m)			loor topography)		Man-made Objects Fault				h Temperatu				
100	m (to be app	proved by E	PSP)				Wellhea	id/Conducto			0 002			p Angle		Condition			
							Others	()	Others	(Tyhoon)						
TBG	Depth	Hole Size		Mud		Potential Drilling	Coring	DIA Bit				ireline Logg	ing		Ceme				Temp. &
(in)	(mbsf)	(Open Hole)	Туре	MW	Viscosity	Problems	Туре	D/H Motor	LWD/I	MWD	Hole Size	Ite	m	Type of Cementing	Slurry Type	CMTG	Caliper	BHST/BHCT	Pressure
LWD Hole	(to be Hole A					* Unstable hole								Cemenand		Interval	LUU		Juver
			* Seawater		1	conditions due to fractured rock												1	1
			* Bentonite			* Unstable sands			6-5/8" TeleS APWD	cope-									
4-1/2*	0-1100	8-1/2*	Hi-vis Pill for hole	1.03		beneath the frontal thrust	N/A	8-1/2*	6-5/8" geoVI	SION	N/A	N	A	N/A	N/A	N/A	N/A	N/A	
			cleaning			* Overpressure in			6-5/8" proVIS	SION									
Coring Hole	e (to be Hole	<u>B)</u>				fracture zones													
			* Seawater * Bentonite			1													
3-1/2*	0-1100	10-5/8*	Hi-vis Pill	1.03			RCB	10-5/8*	N	А	N/A	N	A	N/A	N/A	N/A	N/A	N/A	
			for hole																
			cleaning			-												1	1
						1											I		-
	-	1		-	1	1			1		1							1	1
																		1	

6.2 Drilling Chronology

Table 5. Drilling Chronology

	Exp.343 JFAST3 (Rapid response drilling) Water depth 6909mMSL	Water Depth (mMSL)	Hole Size (inch)	Depth (mMSL)	Depth (mbsf)	Section Length (m)	Daily Progress (m/day)	Days (days)	Sub Total (days)	Total (days)
_	nsit	6,910								
1	Transit from Shingu (Shimizu) to the site.							3.00	3.00	3.00
Rur	a 20"casing w/jetting assembly	6,910								
1	Preparation for Spud							1.00	1.00	
	Free fall UWTV cable to 7000m. Deploy 5+1transponders / DP calibration	l								
		I								
2	Preparation and Run 20" & jetting assembly									
	Rig up guide horn and 20" casing equipn							4.50	5.50	8.50
	Run 20"casing w/UWTV. Jet in 20" casin Recover UWTV. POOH Running Tool	g								
LW	D pilot hole 1,000mbsf	6,910								
1	M/U and Run LWD BHA w/UWTV		 					2.50	2.50	
	Tag the seabed and recover UWTV prior	to start dri	ling. 							
2	Drill 8-1/2"LWD Hole from 0m to 800mbsf		8-1/2"	7,710	800	800	270	3.00	5.50	
									0.50	
3	Wiper trip							1.00	6.50	
4	Drill 8-1/2"LWD Hole from 800m to 1000mbsf		8-1/2"	7,910	1,000	200	150	1.50	8.00	
5	W/trip, POOH, Rig down BHA.							1.50	9.50	18.00
Rur	n tubing & completion Assembly (MTL)	6,910								
1	Run 4.5 inch tubing /1000m? w/completion assembly	-,						4.00	4.00	22.00
	Run UWTV / Entry into Guide base and recover UWTV									
	RIH to 800mbsf, Recover casing running tool.									
Rur	1 20"casing w/jetting assembly	6,910								
1	Preparation and Run 20" & jetting assembly							4.50	4.50	26.50
	Rig up guide horn and 20" casing equipn									
	Run 20"casing w/UWTV. Jet in 20" casin	g								
RCI	Recover UWTV. POOH Running Tool 3 coring 650m-1,000m	6,910								
1	M/U and Run RCB coring BHA w/UWTV							2.00	2.00	
	Entry into Guide base and recover UWTV prior to start	coring								
2	Drill down w/center bit to 650mbsf			7,560	650	650	300	2.50	4.50	
2	Dhirdown wcenter bit to osombsi			7,500	050	050	300	2.50	4.50	
3	Cut core from 650mbsf to 800mbsf.		10-5/8"	7,710	800	150	42	3.50	8.00	
4	Wiper trip / bit Change							3.00	11.00	
5	Cut core from 800mbsf to 1000mbsf.		10-5/8"	7,910	1,000	200	35	5.50	16.50	
6	Spot Kill mud. POOH / Rig down BHA.							1.50	18.00	44.50
Rur	n tubing & completion Assembly	6,910								
1	Run 3.5 inch tubing /1000m? w/completion assembly	· ·						5.00	5.00	
	Run UWTV / Entry into Guide base and recover UWTV	′. I								
	RIH to 800mbsf, Recover tubing running tool.									
2	Recover 5+1 transponders							1.50	6.50	51.00
	nsit									
1	Transit from the site to the Port.							3.00	3.00	54.00
				1						
							Grand Total			54.00

6.3 Drilling Sequence

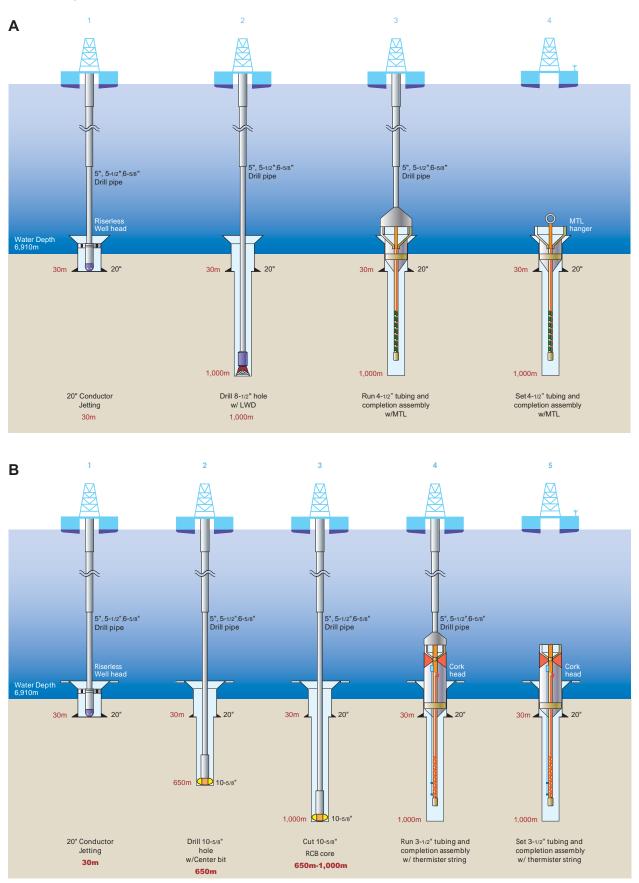


Figure 21. (A) Drilling sequence A, LWD hole. (B) 6.3. Drilling sequence B core hole

6.4 Drilling Program Summary

Table 6. Drilling program summary

Expediton Number	343	Nick Name	JFAST						
Hole Number	2	Hole Name	C0019A, C0019B						
Riser/Riserless	Riserless	ROV	N/A						
Underwater TV	Deployed	Transponder	Deployed						
Pr	imary Expedition Site	Secondary Expedition Site							
Latitude		Latitude							
Longitude		Longitude							
Water Depth	6,910m	Water Depth	6,830m						
TD	1,000mbsf	TD	1,100m						
C0019A	8-1/2"LWD Hole								
C0019B	10-5/8"Coring Hole								
Shallow Gas	Not expected								
Abnormal Pressure	Not expected								
Wellhead	20"CSG by Jetting (In case jetting is not succes	s, Tripod wellhead is s	et at seabed)						
Mud	Seawater and SW Gel Slurry								
Formation Pressure	Normal								
Vertical/Deviation	Vertical								
Deviation Survey	C0019A: MWD								
	C0019B: No plan								
Motor	No plan								
LWD	C0019A: Power Pulse/Telescope/geo VISION/p	ro VISION/APWD							
W/L Logging	C0019B: N/A No plan. Prepare back-off tool (tool down to a m	avinum distance of a	norovimately 7.422mrkh)						
Mud Logging	No plan								
	C0019A: Rent								
Jar	C0019B: JAMSTEC Coring Jar								
	C0019A: No plan								
Coring	C0019B: 650m-1,000m JAMSTEC RCB Wirelin	e Coring							
СМТС	No plan								
Completion	C0019A: 4-1/2"TBG in openhole, Temperature s								
	C0019B: 3-1/2"TBG in openhole, Thermistor str	ing inside TBG & pres	sure sensors outside TBG, Data Logger at CORK head						
Total Days	54days								
Transit	3days								
C0019A	19days								
C0019B	29days								
Transit	3days								
Helicopter	Superpuma	Heli Port	Sendai airport						
Supply Boat	No (On-Call Base)								
Watch Boat	Yes								
Bulk Plant	No plan								

6.5 Contingency Tree

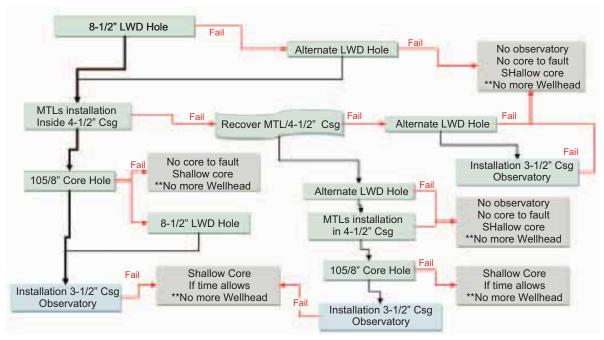


Figure 22. Contingency tree.

6.6 Hazard Assessment

Table 7. Hazard assessment

Potential Hazard /Concern		Impacts on Operations	Initial Risk	CDEX's Deep Hazard Control (Hazard Identification ⇒ Risk Assessment ⇒	Risk Level aft Initial	
			Level	Risk Mitigation)	Mitigation	
(1) Rig &	(a) DPS	 Break Drill string 		Have detail metocean data		
	Drive off/Drift off	* Loss of BHA	Low	Have weather forecast frequently.	Low	
Equipment Failure		 Loss of the hole 	1	Follow WSOG(well Specific Operation Guideline)		
	(b) Broken Guide	* Lose drill string while drilling		Inspect before installation.		
	. ,		Low	 Enough parts shall be on board.(MQJ) 	Low	
	Horn	under sever current/weather				
				 Shallow test shall be conducted. 		
		 Miss LWD/MWD real time 	Low	 Back-up Tool shall be on board. 	Low	
	(c) LWD/MWD failure	data		Battery shall be checked prior to running.		
				Consider battery life while operation.		
		 Kink the coreline 		PM coreline winch.		
	(d) Coreline Winch	 Impossible to pull out the 	1			
	Failure	core tool.	Low	 Both reels (FWD/AFT) shall be available anytime 	Low	
	1 allule	* Increase operation period	-			
				 Remove sinker bar assembly from the HPS while 		
		 Leakage of seawater/mud. 				
	(e) Coreline Wiper		4	laying down the inner barrel if necessary for circulation.		
	Failure	 Increase wireline operation 	Low	 Prepare enough spare parts for coreline wiper 	Low	
	Fallule	time.		Frepare enough spare parts for coreline wiper		
			1	Use New type of coreline		
		* Impossible to re-entry in the		Untwist the cable prior to commencement of the		
		same hole.		operation.		
	(f) UWTV Failure	Abandon the hole	Low	PM shall be done.	Low	
					LOW	
			-	Prepare enough spare parts on board.		
				An engineer shall be onboard.		
(0) Option	(a) Unconsolidated	* Low recovery	4	Consult with coring engineer/geologist	Laur	
(2) Coring	formation	* Wash out core	Low	Selection of core bit properly.	Low	
		 More core operation. 		Half core process instead of full length core		
		 Increase operation period. 		Drift inside drill pipe prior to commencing the		
	(b) Inner Barrel Stuck	(POOH a whole BHA in worst	Low	Circulate well prior to coring.	Low	
				Release sinker bar ass'y and recover. POOH with		
	(c) Unable to unlatch	 Increase operation period 	Low	Circulate hi-vis mud.	Low	
	(-)			 Release sinker bar ass'y and recover. POOH with 		
		 Loss of BHA in hole 	1	Sufficient hole cleaning.		
	(d) Outer barrel stuck	 Abandon the hole 	Low	 Prepare enough hi-vis mud to clean the hole 	Low	
				 Use lubrication additive in mud if necessary 		
		 Decrease ROP 		 Consult with coring engineer and geologist. 		
	(e) Improper core bit	 Increase operation period 	Low	 Prepare different kinds of bits on board. 	Low	
		 Low recovery 			LOW	
		*				
	(f) Improper core	 Decrease ROP 		Consult with core engineer and geologist		
		 Low core recovery 	Low	Change coring parameter(WOB/RPM/SPM//)	Low	
	system selection]	POOH and change the core system (from RCB to		
	(g) Improper core	 Decrease ROP 		Consult with core engineer and geologist		
		* Low core recovery	Low	Change coring parameter(WOB/RPM/SPM//)	Low	
	system selection		1			
		 Limited Over-pull margin 		 Conduct a dynamic simulation study 		
3) Drilling Hazard		* Limited Operation Criteria		Follow WSOG.		
		 Increase waiting on weather 		 Sophisticated Drill string design must be considered. 		
	(a) Critical Drill Pipe	 Longer operation period 	Med	 Carefully handle drill pipe.(Use Dual Elevator) 	Low	
	Strength	Shear Drill Pipe	wied	Carefully watch weather forecast.	LOW	
		* Loss of LWD Tool				
		Impossible to reach target				
		depth.				

	1	1				
	(b) Stuck on drill	 Lose BHA in hole 		Sufficient hole cleaning.	-	
	string	 Increase operation period 	Low	Prepare enough mud	Low	
	Sunng	 Abandon the hole 		Use lubrication additive in mud if necessary		
		 Lose BHA in hole 	Low	Make up BHA with proper torque.	Low	
	(c) Twist off drill string	 Increase operation period 		Do not apply excessive torque.		
		 Abandon the hole 		Set the proper torque limit on DCIS	<u> </u>	
		 Stuck pipe 	Low	Proper BHA.	Low	
	(d) Crooked hole	 Lose BHA in hole 		Use MWD for survey.		
	(u) Clooked lible	 Sidetrack 	LOW			
		 Increase operation period 				
		 Stuck pipe 		Prepare enough mud.		
		* Lose BHA in hole	1	Increase frequency of sweeping hole.	Low	
	(e) Poor hole cleaning		Low	Consider change of drilling parameter.		
				Conduct Wiper/Short trip.		
		* Low ROP		Select tough bit.		
	(f) Bit failure	 Impossible to drill ahead 	Low	Use PDC bit.	Low	
		 Increase operation period 		Consult w/bit company	1	
		 Capacity of cutting 				
		transportation is reduced.				
	(g) Pump Failure	 Accumulation of cutting 	Low	PM pump	Low	
		-				
		around BHA/Stabilizer				
		* Stuck Pipe				
	(a) Caving / Sloughing	* Decrease drilling rate		Observe cutting on shaker carefully.	Low	
		 Increase operation period 	Low	Carry on hole cleaning with hi-vis sweep.		
(4) Geological		* Fill on bottom		Prepare enough mud chemical on board.		
uncertainty		 Hole Pack-off 		Minimize connection time.		
uncontainty		 Lose BHA in hole 		Consider wiper trip.		
		 Abandon the hole 		Consider change of mud property.	4	
				Increase mud weight.		
		 Decrease drilling rate 		Prepare enough mud chemical (LCM).	_	
	(b) Lost circulation	 Increase operation period 	Low	Consider change of mud property(Mud weight).	_ _ Low	
		 Accumulate cutting in hole 		Control drilling parameters.		
		* Stuck pipe, Lose BHA in hole	LOW			
		 Abandon the hole 			1	
	1	 Decrease drilling rate 		Prepare enough chemical on board.		
	(c) Swelling	* Increased operation period	- Low	Consider change of mud property.		
		 Hole pack-off 		Consider change of casing setting depth.	Low	
		* Lose BHA in hole		Increase mud weight.		
		 Abandon the hole 			1	

			Consequence (Monetary/ Reputation)				
			High	Medium	Low		
			Reputation ; International Impact	Reputation ; National Impact	Reputation ; Limited Impact		
			Greater than \$1.0M Cost Worse	Less than \$1.0M Cost Lost	Less than \$100K Cost First Aid		
			than Lost Time	Time			
	Hiah	High potential occurrence; known					
		to have happened more than					
lenc		once on other project					
Frequency	Medium	Likely to occur, has happened at					
L.		least once on other projects					
	Low	Not likely to occur on this hole					

Risk ranking

;

High; Must be assessed and managed to ALAP

Medium ; review to ensure

appropriate barriers and controls

are in place

Low ; Manage by operational documentation

7. Deviation Survey Program

The MWD bottom hole assembly (BHA) will be used for drilling at Proposed Site JFAST-3, Hole A, whereas the coring assembly will be used for all drilling at Proposed Hole B. Hence, no deviation survey is planned for the Proposed Hole A.

8. Bit Program

Table 8. Bit program.

Section	Hole Size	Interval (mMSL)	Penetratio n (m)	Bit / Hole Opener (MFR, IADC Code)	Back up Bit / Hole Opener (MER_IADC
6,909m 7,909m	8-1/2" LWD hole	6,910-7,910 m (0-1,00mbsf)	1,000	MDSi713UBP X SMITH 7blades 7nozzles PDC MSi516HBPX SMITH 5blades 7nozzles 16mm cutter Kymera HP522FX BHI 2blades & 2 cones 2nozzles 16mm cutter	Insert bit GF40UYOD1R D SMITH / (IADC 617) GF45YOD1RD SMITH / (IADC 627) X30GSJ-G TIX / (IADC 537) X60GJ TIX / (IADC 617) Milled tooth XR+PS SMITH / (IADC 117) MH TIX / (IADC 231)
(0- 1,000mbsf)	10-5/8" RCB Core hole	6,910-7,910m (0-1,000mbsf)	1,000	10-5/8" Core bit BHC408C (BHI, PDC) 10-5/8" Core bit BHC410C (BHI, PDC)	10-5/8" Core bit BHC405 x 2 (BHI, PDC) 10-5/8" Core bit BHC408 x 1 (BHI, PDC) 9-7/8" Core bit CC3/CC4/CC7 (insert 4 cone) 10-5/8" Drill bit MH TIX / (IADC 231) X30GJ TIX / (IADC 537) X40GL TIX

table
program
. BHA
Table 9.

	Pcs	Length (m)	Accum. Length	Accum. Weight in mud (kg)	OD & Jt OD (inch)	min ID (inch)			Connection		
4-1/2"tubing /completion assembly	embly 110	066	066	16127.938	4.5 / 4.937	3.833(drift)				4-1/2"Vam top	٩.
tubing hunger	-	0.6	9.066	16137.712			4-1/2"Vam top	q	×	,	ш
tubing running tool	-	1.8	992.4	16318.308	7	4.125		q	×	6-5/8"FH	в
0/X	-	0.8	993.2	16398.573	7.5	4.125	6-5/8"FH	۹.	×	5-3/4"DSTJ	B
5.68"HW DP (premium)	12	112.8	1106	23282.309	5.68(7)	4.125	5-3/4"DSTJ	۵.	×	5-3/4"DSTJ	ш
0/X	-	0.8	1106.8	23362.573	7	4.125	5-3/4"DSTJ	۹.	×	5-1/2"DSTJ	ш
5"DP S-140 (premium)	184	1729.6	2836.4	70962.875	5(7)	4.125	5-1/2"DSTJ	٩.	×	5-1/2"DSTJ	в
5-1/2"DP S-140 (premium)	140 140	1316	4152.4	119829.621	5.5(7)	4.125	5-1/2"DSTJ	٩.	×	5-1/2"DSTJ	в
0/X	-	9.4	4161.8	120772.732	7	4.125	5-1/2"DSTJ	٩.	×	5-3/4"DSTJ	ш
5-1/2"DP S-150 (premium)	1) 200	1880	6041.8	204413.039	5.5(7.5)	4.125	5-3/4"DSTJ	٩.	×	5-3/4"DSTJ	в
5-1/2"DP S-150 (new)	100	940	6981.8	246233.193	5.5(7.5)	4.125	5-3/4"DSTJ	۹.	×	5-3/4"DSTJ	m
0/X	-	0.8	6982.6	246313.458	8.5	4.125	5-3/4"DSTJ	٩.	×	6-5/8"FH	в
6-5/8"DP Z-140 (new)	104	977.6	7960.2	318812.174	6.625(8.5)	4.25	6-5/8"FH	۹.	×	6-5/8"FH	m
		@re-entry	31.1	5-1/2"DP new 23stds							
		@TD	217	6-5/8"DP 26etde							

3. Run		Pcs	Length (m)	Accum. Length	h Accum. Weight in mud (kg)	OD & Jt OD (inch)	min ID (inch)			Connection		
	4-1/2"tubing /completion assembly	110	066	066	16127.938	4.5 / 4.937	3.833(drift)				4-1/2"Vam top	Ч
	tubing hunger	~	9.0	930.6	16137.712			4-1/2"Vam top	q	×		в
	tubing running tool	-	1.8	992.4	16318.308	7	4.125		q	×	6-5/8"FH	в
	O/X	-	0.8	993.2	16398.573	7.5	4.125	6-5/8"FH	Ъ	×	5-3/4"DSTJ	в
	5.68"HW DP (premium)	12	112.8	1106	23282.309	5.68(7)	4.125	5-3/4"DSTJ	Ч	×	5-3/4"DSTJ	в
	O/X	-	0.8	1106.8	23362.573	7	4.125	5-3/4"DSTJ	٩.	×	5-1/2"DSTJ	ш
	5"DP S-140 (premium)	184	1729.6	2836.4	70962.875	5(7)	4.125	5-1/2"DSTJ	٩.	×	5-1/2"DSTJ	в
	5-1/2"DP S-140 (premium)	140	1316	4152.4	119829.621	5.5(7)	4.125	5-1/2"DSTJ	٩.	×	5-1/2"DSTJ	ш
	O/X	-	9.4	4161.8	120772.732	7	4.125	5-1/2"DSTJ	٩.	×	5-3/4"DSTJ	в
	5-1/2"DP S-150 (premium)	200	1880	6041.8	204413.039	5.5(7.5)	4.125	5-3/4"DSTJ	٩.	×	5-3/4"DSTJ	ш
	5-1/2"DP S-150 (new)	100	940	6981.8	246233.193	5.5(7.5)	4.125	5-3/4"DSTJ	٩.	×	5-3/4"DSTJ	в
	O/X	-	0.8	6982.6	246313.458	8.5	4.125	5-3/4"DSTJ	٩.	×	6-5/8"FH	ш
	6-5/8"DP Z-140 (new)	104	977.6	7960.2	318812.174	6.625(8.5)	4.25	6-5/8"FH	Ч	×	6-5/8"FH	в
			@re-entry	31.1	5-1/2"DP new 23stds							
			@TD	21.7	6-5/8"DP 26stds							
							:	:				
<u> </u>	20	ouo	Pre I annth (m) Arr	Accum lanoth A	Accim Wainht in mind (kn) D	OD & If OD /inch/ min ID /inch/	ID (inch) I	Connection	5			

	٩	ш	В	В	ш	В	ш	В	В	В	В	В	В	В	В	В	В	В	В	В		
Connection	4-1/2" Reg	5-1/2"FH	5-1/2"FH	4"IF	4"IF	4"IF	4"IF	4"IF	4"IF	5-3/4"DSTJ	5-3/4"DSTJ	5-1/2"DSTJ	5-1/2"DSTJ	5-1/2"DSTJ	5-1/2"DSTJ	5-3/4"DSTJ	5-3/4"DSTJ	5-3/4"DSTJ	6-5/8"FH	6-5/8"FH		
Deur		×	×	×	×	×	×	×	×	×	х	×	×	×	×	×	×	×	×	×		
Cor		В	٩	٦	٩.	٩.	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩.	٩		
		4-1/2" Reg	5-1/2"FH	5-1/2"FH	4"IF	4"IF	4"IF	4"IF	4"IF	4"IF	5-3/4"DSTJ	5-3/4"DSTJ	5-1/2"DSTJ	5-1/2"DSTJ	5-1/2"DSTJ	5-1/2"DSTJ	5-3/4"DSTJ	5-3/4"DSTJ	5-3/4"DSTJ	6-5/8"FH		
min ID (inch)	-	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	4.125	4.125	3.17	4.125	4.125	4.125	4.125	4.125	4.125	4.25		
OD & Jt OD (inch)	8.5	6.75/7.75(stab)	6.75/7.75(stab)	6.725/6.89(max)	6.25	6.725	6.75	6.25	6.75	7	5.68(7)	7	7.25	5(7)	5.5(7)	7	5.5(7.5)	5.5(7.5)	8.5	6.625(8.5)		
Accum. Weight in mud (kg)	38.942	520.512	2057.401	2881.014	4112.155	4326.335	16528.088	17722.302	23823.179	23901.062	30784.798	30865.063	30995.381	110339.155	159205.901	159286.166	242926.474	284746.627	284826.892	358719.815	5-1/2"DP new 25stds	6-5/8"DP 25stds
Accum. Length	0.3	3.385	14.757	22.285	31.485	33.135	127.135	136.335	183.335	183.935	296.735	297.535	298.450	2817.650	4133.650	4134.450	6014.450	6954.450	6955.250	7951.650	23.650	13.150
Length (m)	0.3	3.085	11.372	7.529	9.2	1.65	92	9.2	47	0.6	112.8	0.8	0.914	2519.2	1316	0.8	1880	940	0.8	996.4	@re-entry	@TD
Pcs	-	-	-	-	-	-	10	-	5	-	12	-	-	268	140	-	200	100	-	106		
	8-1/2"bit	geoVISION675	proVISION675	Telescope 675	6-3/4" NMDC	8-1/2" Str Stabilizer	6-3/4DC(for drilling)	6-1/4"Drilling Jar	6-3/4DC(for drilling)	X/O	5.68"HW DP (premium)	0/X	Drilft cathcer sub (Churchill)	5"DP S-140 (premium)	5-1/2"DP S-140 (premium)	0/X	5-1/2"DP S-150 (premium)	5-1/2"DP S-150 (new)	N/O	6-5/8"DP Z-140 (new)		

34

Connection min ID (inch) OD & Jt OD (inch) Accum. Weight in mud (kg) Accum. Length Length (m) Pcs 5.RCB coring

6. Run		Pcs	Length (m)	Accum. Length	Accum. Weight in mud (kg)	OD & Jt OD (inch)	min ID (inch)		Conn	Connection	
	3-1/2"tubing /completion assembly	110	066	066	11774.795	3.5 /2.992	2.867(drift)			3-1/2"Vam top	٩
	tubing hunger	-	9.0	9.066	11781.931			3-1/2"Vam top	x q		8
	tubing running tool	-	1.8	992.4	11962.527	7	4.125		q	x 6-5/8"FH	Ξ
	X/O	-	0.8	993.2	12042.792	7.5	4.125	6-5/8"FH	_ _	x 5-3/4"DSTJ	m
I	5.68"HW DP (premium)	12	112.8	1106	18926.528	5.68(7)	4.125	5-3/4"DSTJ	_ _	x 5-3/4"DSTJ	m
	X/O	-	0.8	1106.8	19006.792	7	4.125	5-3/4"DSTJ	_ _	x 5-1/2"DSTJ	B
	5"DP S-140 (premium)	184	1729.6	2836.4	66607.094	5(7)	4.125	5-1/2"DSTJ	_ _	x 5-1/2"DSTJ	ш
I	5-1/2"DP S-140 (premium)	140	1316	4152.4	115473.840	5.5(7)	4.125	5-1/2"DSTJ	^ ٩	x 5-1/2"DSTJ	ш
	0/X	-	9.4	4161.8	116416.951	7	4.125	5-1/2"DSTJ	× L	5-3/4"DSTJ	ш
	5-1/2"DP S-150 (premium)	200	1880	6041.8	200057.258	5.5(7.5)	4.125	5-3/4"DSTJ	_ _	x 5-3/4"DSTJ	B
	5-1/2"DP S-150 (new)	100	940	6981.8	241877.412	5.5(7.5)	4.125	5-3/4"DSTJ	_ _	x 5-3/4"DSTJ	B
	X/O	-	0.8	6982.6	241957.677	8.5	4.125	5-3/4"DSTJ	× L	6-5/8"FH	m
	6-5/8"DP Z-140 (new)	104	977.6	7960.2	314456.393	6.625(8.5)	4.25	6-5/8"FH	_ _	x 6-5/8"FH	8
			@re-entry	31.1	5-1/2"DP new 23stds						
			@TD	21.7	6-5/8"DP 26stds						

		Pcs	Length (m)	Accum. Length	Accum. Weight in mud (kg)	OD & Jt OD (inch)	min ID (inch)		S	Connection	ion
3-1/2"tubing /completion assembly 110 990 990	066		066		11774.795	3.5 /2.992	2.867(drift)				3-1/2"Vam top
tubing hunger 1 0.6 990.6			990.6		11781.931	•		3-1/2"Vam top	b	×	
tubing running tool 1 1.8 992.4			992.4		11962.527	7	4.125		b	×	6-5/8"FH
X/O 1 0.8 993.2			993.	2	12042.792	7.5	4.125	6-5/8"FH	Ρ	×	5-3/4"DSTJ
5.68"HW DP (premium) 12 112.8 1106	112.8		11(90	18926.528	5.68(7)	4.125	5-3/4"DSTJ	Ρ	×	5-3/4"DSTJ
X/O 110 0.8 110			110	1106.8	19006.792	7	4.125	5-3/4"DSTJ	Ρ	х	5-1/2"DSTJ
5"DP S-140 (premium) 184 1729.6 2836.4	1729.6		283(5.4	66607.094	5(7)	4.125	5-1/2"DSTJ	Ρ	х	5-1/2"DSTJ
5-1/2"DP S-140 (premium) 140 1316 4152.4	1316		4152	2.4	115473.840	5.5(7)	4.125	5-1/2"DSTJ	Ρ	х	5-1/2"DSTJ
X/O 1 9.4 4161.8			4161	8.	116416.951	7	4.125	5-1/2"DSTJ	Ρ	х	5-3/4"DSTJ
5-1/2"DP S-150 (premium) 200 1880 6041.8	1880		604	8.1	200057.258	5.5(7.5)	4.125	5-3/4"DSTJ	٩	×	5-3/4"DSTJ
5-1/2"DP S-150 (new) 100 940 6981.8	940		698	1.8	241877.412	5.5(7.5)	4.125	5-3/4"DSTJ	Р	×	5-3/4"DSTJ
X/O 1 0.8 698			698	6982.6	241957.677	8.5	4.125	5-3/4"DSTJ	Р	×	6-5/8"FH
6-5/8"DP Z-140 (new) 104 977.6 796	977.6		796	7960.2	314456.393	6.625(8.5)	4.25	6-5/8"FH	Ρ	×	6-5/8"FH
@re-entry 31.1			31.	1	5-1/2"DP new 23stds						
	@TD 2′		2,	21.7	6-5/8"DP 26stds						

Table 10. typical string weight. (A) RCB Core hole, and (B) 4-1/2" tubing run.

Α

Water Depth (mBRT)		
Drilling Dept (mbsf)	1,000.0	
Total Depth (mBRT)	7,938.5	
Bit Depth (mBRT)	7,943.0	
Mud weight (SG)	1.03	
Buoy. Fact	0.869	

_		_	
6-5/8"Z-140 new	996.40	m	106jts
Weight	85.36	kg/m	
Buoyed Weight	74.16	kg/m	
Section Weight in water	74	ton	
5-1/2" S-150 new	940.00	m	100jts
Weight	51.21	kg/m	
Buoyed Weight		kg/m	
Section Weight in water	42	ton	
5 4/01 0 450	1000.00		
5-1/2" S-150 premium	1880.00		200jts
Weight	51.21	kg/m	
Buoyed Weight	44.49	0	
Section Weight in water	83.64	ton	
5-1/2" S-140 premium	1316.00	-	140jts
Weight			140](5
Buoyed Weight	37.13		
Section Weight in water	48.87	0	
Section weight in water	40.07	ton	
5" S-140 premium	2519.20	m	268jts
Weight		kg/m	
Buoyed Weight	31.55		
Section Weight in water	79.47		
0			
_		_	
HW drill pipe 5.68"	112.80	m	12jts
Weight	70.24	kg/m	
_		-	
Section Weight in water	6.88	ton	
8-1/2" DC(core)	178.60		19jts
Weight	199.09	kg/m	
Buoyed Weight	172.97	kg/m	
Section Weight in water	30.89	ton	

	Dauth mDDT				a)	(b)	(C)) -(a)
Drill pipe size & Grade	Depth mBRT top	Section	Weight		Neight	tensile	(b) x safety	Load (dynamics)	l Margin & overpul
Dilli pipe size & Grade	bottom	ton	kN	ton	pp) kN	capacity ton	factor ton	otN	kN
6-5/8"Z-140 new	-4.50 991.90	73.9	724.2	365.5	3581.6	781	702.90 ((b)x90%)		3306.8
5-1/2" S-150 new	991.90 1931.90	41.8	409.8	291.6	2857.4	541	486.90 ((b)x90%)	195.3	1914.2
5-1/2" S-150 premium	1931.90 3811.90	83.6	819.7	249.8	2447.6	541	432.80 ((b)x80%)	183.0	1793.8
5-1/2" S-140 premium	3811.90 5127.90	48.9	478.9	166.1	1627.9	421	336.80 ((b)x80%)	170.7	1672.7
5" S-140 premium	5127.90 7647.10	79.5	778.8	117.2	1149.0	335	268.00 ((b)x80%)	150.8	1477.4
HW drill pipe 5.68"	7647.10 7759.90	6.9	67.5	37.8	370.2	541	432.80 ((b)x80%)	1477.4	3871.2
8-1/2" DC(core)	7759.90 7938.50	30.9	302.7	30.9	302.7	989	791.20 ((b)x80%)	760.3	7451.0
Total string weight				365.5	3581.6		Load Margin	150.8	395.0
							(dynamics &	5" S-14	0 premiu
HPS weight				70.4	690.0		overpull)		
Total Hook Reading				435.9	4271.6				
CMC max compensating	aload			518.0	5076.4	1			
HPS lifting capacity	y Loau			908.0	8898.4				

В

Water Depth (mBRT) 6938.5		
Drilling Depth (mbsf) 1000.0	6-5/8"Z-140 new	996.40 m
Total Depth (mBRT) 7938.5	Weight	85.36 kg/m
Bit Depth (MBRT) 7964.8	Buoyed Weight	74.16 kg/m
Mud weight (SG) 1.03	Section Weight in water	74 ton
Buoy. Fact 0.869	Occilon Weight in Water	14 1011
Buby. Fact 0.009	5-1/2" S-150 new	940.00 m
	Weight	51.21 kg/m
	Buoyed Weight	44.49 kg/m
	Section Weight in water	42 ton
	5-1/2" S-150 premium	1880.00 m
	Weight	51.21 kg/m
	Buoyed Weight	44.49 kg/m
	Section Weight in water	83.64 ton
	5-1/2" S-140 premium	1316.00 m
	 Weight	42.74 kg/m
	Buoyed Weight	37.13 kg/m
		48.87 ton
	Section Weight in water	40.07 1011
	5" S-140 premium	1729.60 m
	Weight	36.31 kg/m
	Buoyed Weight	31.55 kg/m
	Section Weight in water	54.56 ton
	_	
	HW drill pipe 5.68"	112.80 m
	Weight	70.24 kg/m
	Buoyed Weight	61.03 kg/m
	Section Weight in water	6.88 ton
		0.00 1011

4-1/2" tubing	990.00 m	110jts
Weight	18.75 kg/n	n
Buoyed Weight	16.29 kg/n	n
Section Weight in water	16.13 ton	

106jts

100jts

200jts

140jts

184jts

12jts

				(a)	(b)	(c)	(c)	-(a)
Drill pipe size & Grade	Depth mBRT top	Section	Weight	Cum We	eight (top)	tensile capacity	(b) x safety factor	Load (dynamics)	d Margin & overpul
	bottom	ton	kN	ton	kN	ton	ton	otN	kN
6-5/8"Z-140 new	-36.30 960.10	73.9	724.2	325.8	3192.8	781	702.90 ((b)x90%)	377.1	3695.6
5-1/2" S-150 new	960.10 1900.10	41.8	409.8	251.9	2468.6	541	486.90 ((b)x90%)	235.0	2303.0
5-1/2" S-150 premium	1900.10 3780.10	83.6	819.7	210.1	2058.8	541	432.80 ((b)x80%)	222.7	2182.
5-1/2" S-140 premium	3780.10 5096.10	48.9	478.9	126.4	1239.1	421	336.80 ((b)x80%)	210.4	2061.
5" S-140 premium	5096.10 6825.70	54.6	534.7	77.6	760.2	335	268.00 ((b)x80%)	190.4	1866.
HW drill pipe 5.68"	6825.70 6938.50	6.9	67.5	23.0	225.5	541	432.80 ((b)x80%)	409.8	4015.
4-1/2" tubing	6938.50 7928.50	16.1	158.0	16.1	158.0	989	791.20 ((b)x80%)	775.1	7595.
Total string weight				325.8	3192.8		Load Margin	190.4	1866.2
Total string weight				525.0	5152.0		(dynamics &	5" S-140	premium
HPS weight				70.4	690.0		overpull)	0 0 110	proman
Total Hook Reading				396.2	3882.8				
CMC max compensating	hoad			518.0	5076.4	1			
HPS lifting capacity	, 2000			908.0	8898.4				

10. Drilling Fluid (Mud) Program

10.1 Drilling Fluid Summary

Below is the summary of the J-FAST mud program (Table T10):

Table 11. Drilling fluid (mud) table.

Hole Size	Total Depth	Mud	Mud Type /
HUIE SIZE	Total Depth	Properties	Remarks
	JFAST3	B Hole A	
	7,938.5mBRT	Mud Wt. Unweighted	 Sea Water + S/W Gel Slurry
8-1/2"	(1,000mbsf)	PV n/a ,	• Sweeps : S/W gel Slurry
0 112	Set 4-1/2" TBG at proper depth	YP n/a	(5-10kl per half stand or 1stand for drilling)
		API FL No	
		Control	
	JFAST3	Hole B	

10.2 Potential Hole Problem Summary

Table 12. Drilling fluid (mud) table.

Hole Size	Formation	Potential Hole Problem	Proposed Countermeasure
	Silty Clay	Hole Instability :	Pump enough sweep per single joint or stand and displace hole to S/W gel at TD.
Riserless Hole	Loose Sand Layer	Hole collapse	Pump mud continuously if required.
	Conglomerate		
	Chart	High Pressure	Kill the well and change location.
	Basalt		

11. Casing Program

11.1 Coring program

Table 13. "Casing Program" in casing program table (A) JFAST3 Hole A, and (B) JFAST Hole B.

Α	OD	Planned Set Depth	Grade	Weight/WT	Connection	Mud Weight (sg)
	20"	29 mbsf	X-56	0.625WT	RL-4S	Sea Water
	4.5"	900± mbsf	L-80	12.6 lbs/ft	VAM TOP	1.03

D
D

В	OD	Planned Set Depth	Grade	Weight/WT	Connection	Mud Weight (sg)
	20"	29 mbsf	X-56	0.625WT	RL-4S	Sea Water
	3.5"	900± mbsf	L-80	9.2 lbs/ft	VAM TOP	1.03
	3.5"	(Contingency)	SM-95S	12.7 lbs/ft	VAM TOP	

Size	Nominal weight Weight	Weight	D.	Drift I.D.	Coupling OD	Coupling ID	Tensile Strength	Collapse Resistance	Internal Yield Press.	Capacity	Capacity Displacement	Make-up Torque	pipe order
(inch)	Grade	(Ibs/ft)	(inch)	(inch)	(inch)	(inch)	(klbs)	(psi)	(bsi)	Vol.	Vol.	(ft-lb)	
(mm)	Connection	(kg/m)	(mm)	(mm)	(mm)	(mm)	(ton)	(Mpa)	(Mpa)	(I/m)	(I/m)	(m-N)	
	0.625"wall												
20	X-56	129.28	18.75	18.562	21.5	18.63	2129.6	1436	3058	178.14	24.54	40,000-45,000	R- II 7 jts
508	RL-4S	192.40	476.25	471.47	546.10	473.20	966.0	9.9	21.1			54,200-61,000	WH joint 2 jts
													jetting shoe joints 2jts
	12.6lbs/ft												R-2 1000m
4.5	L-80	12.6	3.958	3.833	4.937	3.913	288	7500	8430	7.94	2.32	4,000-4,440-4,880	1m Pup 4jts
114.3	VAM TOP	18.75	100.53	97.36	125.40	99.39	130.6	51.7	58.1			5,400-6,000-6,600	3m Pup 2jts
													6m Pup 2jts
	9.2lbs/ft												R-2 1000m
3.5	L-80	9.2	2.992	2.867	3.907	2.959	207	10540	10160	4.54	1.67	2,610-2,900-3,190	1m Pup 4jts
88.9	VAM TOP	13.69	76.00	72.82	99.24	75.16	93.9	72.6	70.0			3,540-3,930-4,320	3m Pup 2jts

Table 14. Specification of Ccsing and tubing pipes" in casing program table.

11.2 Specification of Casing

3m Pup 2jts 6m Pup 2jts

R-2 30 jts

4,950-5,500-6,050

2.38

3.83

17810 122.8

18170 125.3

350 158.8

2.707 68.76

4.043 102.69

2.625 66.67

2.75 69.85

12.7 18.90

12.7lbs/ft SM-95S VAM TOP

3.5 88.9

6,700-7,500-8,300

12. Hole Evaluation program

12.1 LWD/MWD logging

The logging plan for Expedition 343 is designed to monitor drilling conditions and define lithology and structure changes in real time by use of LWD/MWD. The main aim is to decide the best target depths for installation of the observatory components. LWD/MWD tools are planned to comprise the TeleScope675_MWD, located above the geoVISION675 and ProVISION675_LWD (Figure 23).

The TeleScope_MWD tool transmits APWD (Annular Pressure While Drilling) and MWD real time data and provides information to improve drilling efficiency, and reduce risk. This tool is the highest priority.

The geoVISION can make five resistivity measurements, and has three azimuthally-focused button electrodes for electrical imaging, and also collects azimuthal gamma ray measurements. The resistivity tool is based on RAB (Real-time At-Bit) technology to provide resistivity data and azimuthally focused laterolog measurements for detailed geological imaging on the borehole wall. The geoVISION tool contains a scintillation counter that provides a total gamma ray measurement.

The proVISION tool delivers real-time Nuclear Magnetic Resonance (NMR) data and determinations of mineralogyindependent porosity, permeability and pore size and bound-fluid volume.

The sequence of operations during IODP Expedition 343 is to:

- Drill the primary hole with LWD-MWD to planned total depth (TD) to ~ 1,000 mbsf.
- Run tubing and completion assembly (including long-term temperature monitoring with the autonomous string) in the LWD-MWD hole to a depth of ~1,000 mbsf.
- Drill a second hole with RCB drilling with center bit to ~650 mbsf, and continue with RCB coring to ~1,000 mbsf (bottom).

• Run tubing and completion assembly into the second hole (including long-term temperature monitoring with thermistor string and pressure monitoring via a flatpack) to a depth of ~1,000 mbsf.

• In case of failure at either or both the primary/alternate sites or in case operations finish ahead of schedule, contingency sites are planned to core or to drill with MWD-LWD.

12.2 Decision tree

A decision tree of operations for the various successes and failures of the operational plan is shown in Figure 24.

12.3 Contingency plan

In case of failure at either the primary and alternate sites or in case primary operations finished ahead of schedule, coring or logging with MWD/LWD except NMR logging, are planned at contingency sites upon decision made onboard.

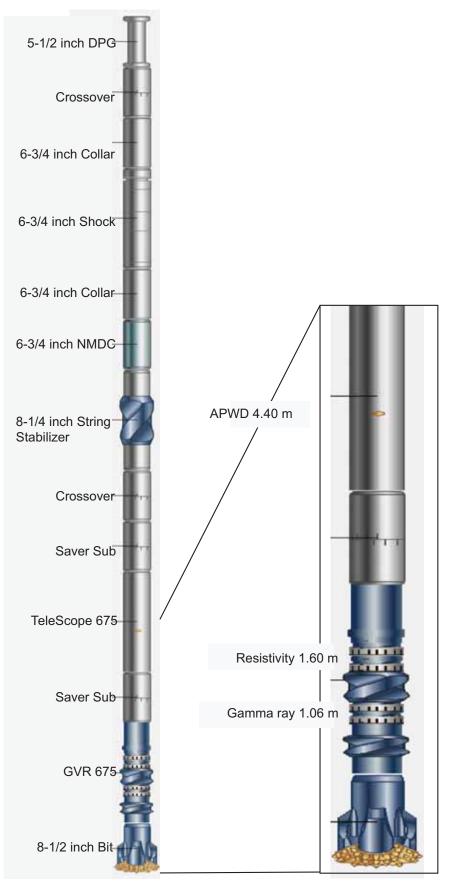
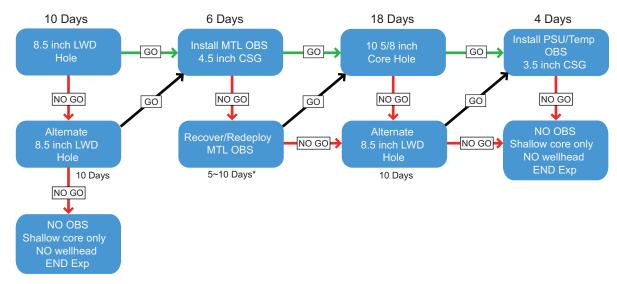



Figure 23. BHA diagrams for LWD/MWD tool.

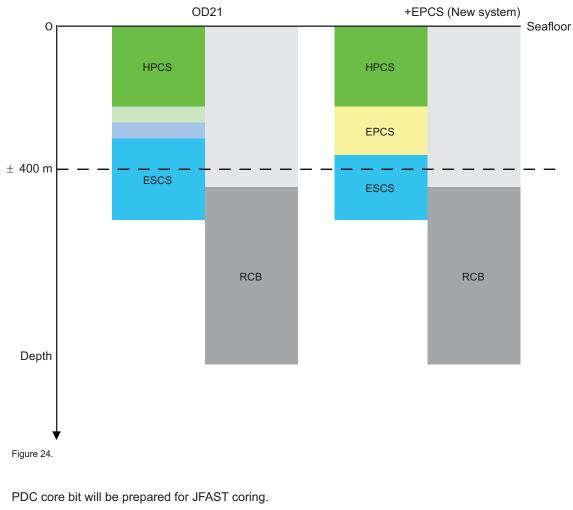
The entire bore hole assembly is shown on the left (totally 116 m in length), with a close-up of the "proVISION675", "TeleScope675" and "geoVISION675" tools on the right with measurement points (from the bit face) of the nuclear magnetic resonance sensor, APWD (Annular Pressure While Drilling), gamma and resistivity. XO = Crossover, NMDC = Non Magnetic Drill Collar, Bit size = 8 ½-inch.

*Time estimates depend on whether guidehorn needs to be removed or not.

Figure 24. Operation decision tree.

LWD = Logging While Drilling, OBS = Observatory, MTL = Miniature Temperature Logger, CSG = Casing, PSU = Pressure Sensor Unit.

13. Coring Program


The Rotary Core Barrel coring system (RCB) will be available on Chikyu for IODP Expedition 343 "JFAST", and plans are in effect to collect RCB core from the Proposed Site JFAST-3 "B" Hole. The RCB coring system in IODP is typically used for harder sediments and rocks in deeper formations. Safety monitoring on Chikyu typically includes continuous ROV monitoring while drilling at sites located in 3000 m of water or less – unfortunately this will be unavailable during IODP Expedition 343 due to the great water depth (~7000 m). During coring operations, geochemical hydrocarbon monitoring on Chikyu will be similar to that of JOIDES Resolution operations.

13.1 Coring summary

Table 15. Coring Table.

ŀ	Hole Name	Hole Size	Coring Depth	Coring System	Remarks
	C0019	10-5/8"	650-1,000 mbsf (TD)	RCB	Drill down to 650mbsf with center bit assembly

13.2 Typical coring system selection

BHC 405 (5 blades PDC core bit)

BHC 408 (8 blades PDC core bit)

BHC 408C (8 blades PDC core bit addition of ware knots / upgrade to cutters) BHC 410C (10 blades PDC core bit addition of ware knots / upgrade to cutters)

13.3 Comparison of ODP with OD-21 Coring Systems

- The primary objective of the OD21 coring system is to collect high quality cores safely and effectively using both riser and riserless coring (with drilling mud or seawater).
- Coring Systems between ODP and OD21 are compatible and can be used on "Chikyu" or "JOIDES Resolution" although different Bottom Hole Assemblies are needed.
- 9-7/8" HPCS, ESCS and RCB coring systems are modifications of the ODP/TAMU APC, XCB and RCB coring systems.

4) 8-1/2" SD-RCB system is similar to the TAMU 7-1/4" ADCB system.

			Inner	Outer				Inner			Outer
ODP	Coi	re	Barrel	Barrel	OD-21	Co	re	Barrel	Core	Liner	Barrel
Core Sampling	Trim OD	Length	OD	OD	Core Sampling	Trim OD	Length	Max. OD	OD	ID	OD
System	(in)	(m)	(in)	(in)	System	(in)	(m)	(in)	(in)	(in)	(in)
11-7/16" APC	2.44	9.50	4.00	8.25	HPCS 9-7/8"(PDC/Hibrid Bit) 11-7/16"(Roller Cone)	2.44	9.40	3.50	2.80	2.60	8.44
11-7/16" XCB	2.31	9.50	4.00	8.25	ESCS 9-7/8"(PDC/Hibrid Bit) 11-7/16"(Roller Cone)	2.31	9.40	3.50	2.80	2.60	8.44
9-7/8" RCB	2.31	9.50	4.00	8.25	RCB 9-7/8"(Roller Cone /PDC/Hibrid) 10-5/8"(PDC)	2.31	9.50	3.50	2.80	2.60	8.25
7-1/4" ADCB	3.35	9.50 4.75	3.8	6.75	8-1/2" SD-RCB	3.27 3.35	9.14	3.80	3.50	3.40	6.75
9-7/8" PCS	1.70	0.99	3.75								
9-7/8" MDCB	2.25	4.50									

* OD-21 core size is same as ODP (no change from ODP) on tool dimensions.

* 8-1/2" SD-RCB : 3.27" Core OD is for Tripple Tube System (PQ-3), 3.35" is for Conventional Tube (PQ)

* 9-7/8" PCS : 3.75" is Pressured Sample Chamber OD

OD-21 Improvements

9-7/8"& 11-7/16" HPCS

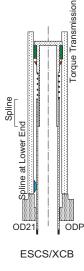
Reduced the strength of Torison Spring to activate Lock Open Dog. Made "Liner Support Sleeve" thicker with a beveled entrance to reduce failures. Screw-on "Vent Snubber" on "Male Quick Release" Added "Piston Head Extender" between Piston Head and Formation Developed and lab tested "Low Disturbance Cutting Shoes" Coating Inner Barrel parts to prevent mud flow erosion during riser drilling. Developed a spreadsheet to better predict HPCS performance.

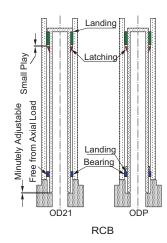
9-7/8"& 11-7/16" ESCS

"Low End Drive" system to reduce rotary vibrations and prevent core disking. Hardened Inner Barrel parts to prevent mud flow erosion during riser drilling. Adopted integral blade WC coated stabilizers for increased wear life. Optional upper stabilizer on Outer Barrel for PDC and diamond. Developed spreadsheets to predict venturi and cutting shoe flow performance. Improved "Venturi Vent System" (20% decrease of back pressure) Optomized Cutting Shoe flow to improve performance and prevent core washout. Tool optimized for PDC and diamond bit capability and drilling with mud Developed PDC and diamond bits compatible with the ESCS.

10-5/8" RCB

Moved the Landing shoulder to top of tool to prevent core jamming. Add adjustable system for easy and accurate control of Inner Barrel Length. Developed "Labyrinth Bit Seal"


Hardened Inner Barrel parts to prevent mud flow erosion Adopted integral blade WC coated stabilizers for increased wear life. Optional upper stabilizer on Outer Barrel for PDC and diamond Developed more rugged core catchers.


Tool optimized for PDC and diamond bit capability and drilling with mud. "Close catch" core catchers minimize gap between bit and catcher. Developed very effective PDC bit and several diamond bits.

Abbreviations

APC: Advanced Piston Corer XCB: Extended Core Barrel RCB: Rotary Core Barrel ADCB: Advance Diamond Core Barrel HPCS: Hydraulic Piston Coring System ESCS: Extended Shoe Coring System SD-RCB: Small Diameter Rotary Core Barrel ESCS: Extended Shoe Coring System

Figure 25.

13.4 Chikyu Coring System

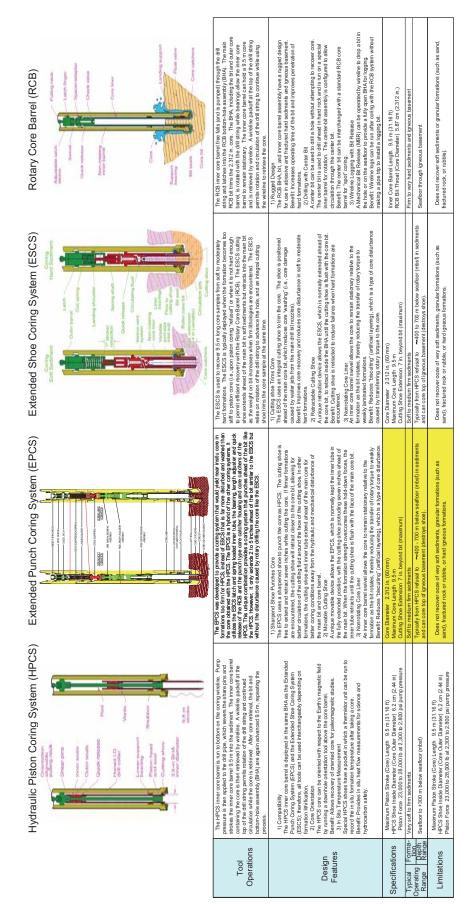


Figure 26.

13.5 Wireline Coring System Selection Guide

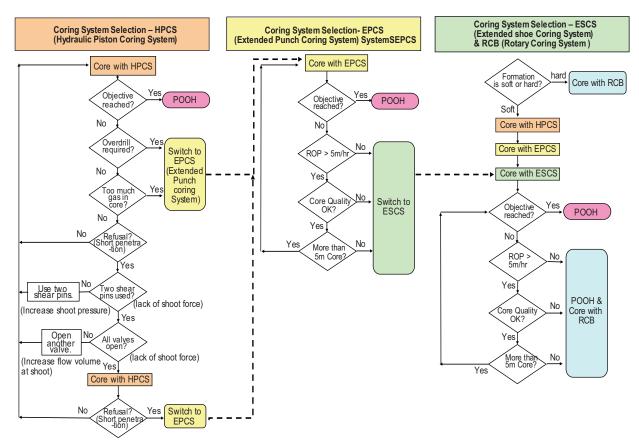


Figure 27.

14. Wellhead and Completion

14.1 Riserless Wellhead

Jetting Wellhead (Fig. 27)

The wellhead for IODP Expedition 343 is a simplified version of a typical riserless wellhead, without a mudmat gimbal profile or BOP H4 profile on the outside. Two 3-inch diameter flowbys have been newly machined to allow jetting flowby. The funnel size for Proposed Hole A was minimized to 30-inch to run down though the rotary and middle guide horn. This minimizes guide horn handling only for upper guide horn and all the operation can be done at drill floor.

The funnel size for Proposed Hole B is 61-inch with a 109-inch ROV platform since the CORK head will require extensive follow-up ROV work. Jetting-in the second wellhead requires the installation of a re-entry funnel at the moonpool, necessitating the separation of the guidehorn between the middle and lower guidehorn.

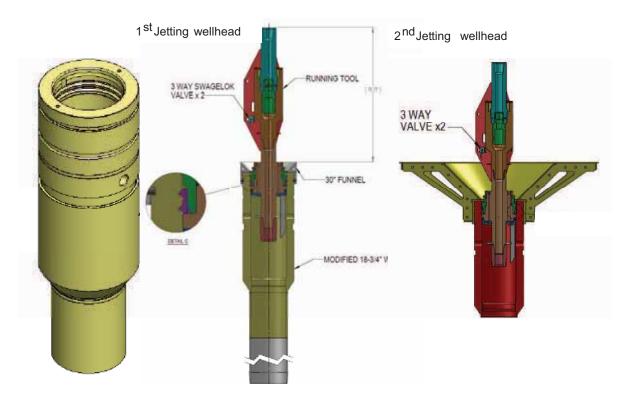
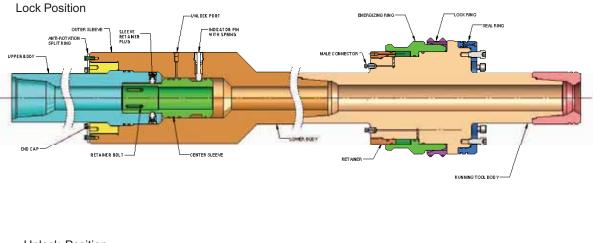
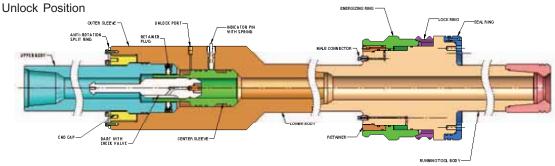




Figure 27. Jetting wellhead.

CART (Fig.28)

IODP Expedition 343 requires the underwater TV system (UWTV) for reentry and jetting due to the extreme water depth (7000 m). While the UWTV is deployed, drill string rotation is prohibited to avoid umbilical cable entanglement. Additionally, the UWTV does not have a pressure supply device; therefore, the CART has been modified so that an internal pressure assist will activate the tool. Tool activation is accomplished by dropping a dart plug (designed to be retrieved by the inner-barrel retrieving tool) into the well and pumping.

Tripod Wellhead (Fig. 29) The tripod wellhead is a secondary wellhead option in case jetting-in operations fail due to encountering a "hard rock" layer in the top 10 - 20 mbsf. This wellhead can be deployed without jetting and the wellhead selfaligns to vertical position via gravity. Originally, it was set to accept seabed angles of 30° but has been modified to accept a maximum of 10° for IODP Expedition 343 to avoid causing complications for reentry operations. This wellhead requires the guide horn to be fully dismantled before the running and full mobilization of the guide horn after running.

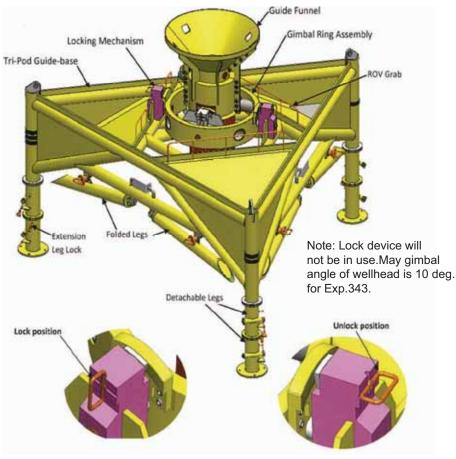


Figure 29. Tripod wellhead.

14.2 Completion for Proposed Hole A.

Casing Hanger Completion (4-1/2-inch TBG) includes internal MTL (miniature temperature loggers) (Fig. 30). Concept of this internal completion is to monitor the temperature profile along the borehole by hanging 50 MTLs from a hanger at the wellhead within the tubing (TBG) with a Vectran rope (low elongation rope). The sensors will be closely spaced near the fault location to focus on the fault section, and more widely spaced away from the fault. The MTL string will be recovered within 6 months via a deep-water ROV rated for 7000 m water depth. The internal rope assemblies (7 sections) are linked with special round shackles, two of which will be replaced with weak links, allowing recovery of some sensors even if the tubing becomes sealed by fault slip after installation.

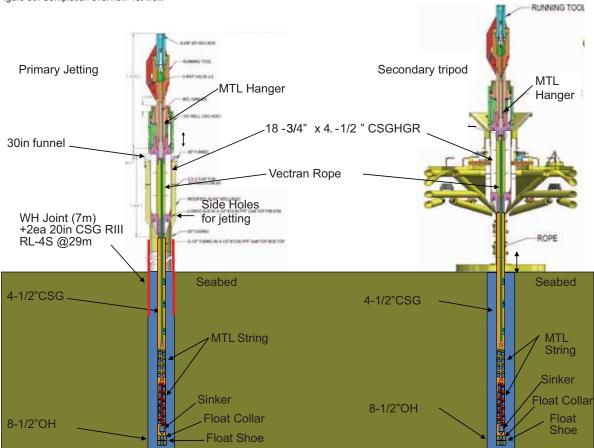
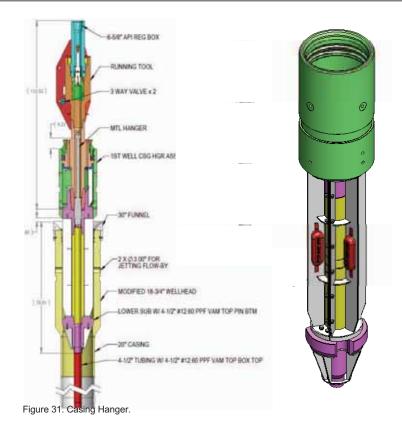



Figure 30. Completion overview 1st well.

Casing Hanger (Fig. 31)

The Casing Hanger is designed to deploy with the same CART tool as the wellhead described above. It can accommodate the MTL hanger (Inconel 625) from which the internal MTL/Vectran rope assembly can be suspended.

Miniature Temperature Sensor (Fig. 32)

A total of 55 MTL sensors will be installed in Hole A. These are all independent, self-contained, temperature sensors measuring temperature and pressure.

MTL	(a)	(b)
Manufacturer	RBR	ANTARES
PN	TDR-2050 Ti	1859 Deep Water Temperature Data Logger
Quantity	25 (10 of these have pressure sensors as well.)	30
Weighti n air (g)	550	Approx. 200
Weight in water (g)	220	
OD (mm)	38	20
L (mm)	270	190
Housing	Titan	Titan
MAX Pressure (MPa)	Corresponding to 10000 m Depth (About) 101	100
Measuring Range	-5 ℃ to 35 ℃ (Standard Range), -40 ℃ to 50 ℃ (Extended Range)	-5 °C to 50 °C
Resolution	<0.00005 °C	0.001 °C
Accuracy	+/- 0.002 °C	<+/- 0.1°C
		Canada and C
Figure 32. Miniature temper	rature sensor.	

Vectran Rope

The rope is being manufactured with pre-spliced eyes from which to hang the MTL sensors. The total assembly will consist of two main components: one widely spaced spliced-eye part, and one closely spaced spliced eye part. The widely spaced section will be comprised of two long sections (500 m each); the closely spaced section will be comprised of five shorter sections, from 12 to ~33 m in length. Vectran rope was selected in part due to its' short "stretch" length (0.325% stretch with 350 kg suspended weight), and in part because of its' light weight-to-strength ratio due to lifting restrictions of the ROV (maximum lifting weight=400 kg).

MTL Hanger and Sinker Bar (Fig. 33)

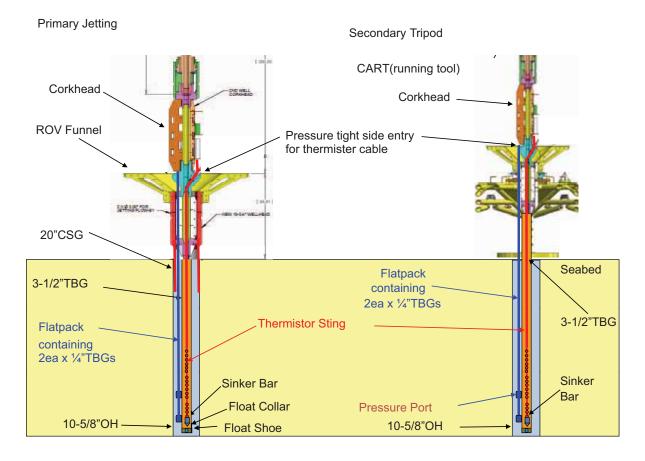
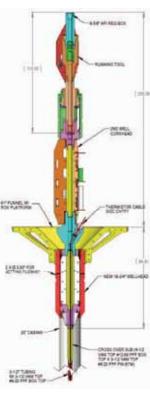
In the event that the MTL string is not recovered within the scheduled recovery plan, corrosion effects must be mitigated. Therefore, the MTL hanger and Sinker bar are constructed of Inconel 625 (resistant to corrosion for up to 5 years). MTL hanger is equipped with an "eye" on the top for the ROV to attach a hook for recovery.

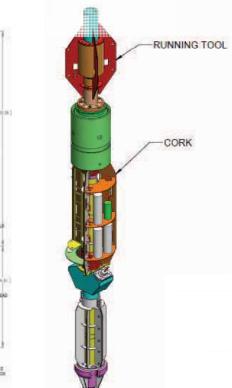
14.3 Completion for Proposed Hole B. CORK head Completion (3-1/2-inch TBG) with internal thermistor string.

(Fig. 34, 35)

This completion assembly contains: the downhole (at the fault) and surface external pressure ports, connected by flatpack to the pressure logger unit mounted on the CORK head; the internal temperature thermistor string (20 sensors) running to a data logger (also on CORK head); and a transponder. The data stored inside the loggers can be retrieved in three ways: by ROV communication using wet mate connector, physical retrieval of the logger by ROV and via UWTV acoustic communication (temperature data only).

Figure 33. MTL hanger and sinker bar.


Figure 34. Completion overview for 2nd well.

3.2 Pressure Monitoring System.(External Flat Pack with Pressure Logger)

(Fig. 36)

The flatpack internally accommodates two ¼ -inch TBG lines that communicate between the pressure ports at/near the fault area and the pressure sensor unit (PSU) mounted on the CORK. The PSU data can be retrieved by ROV by wetmate connector communication or by ROV recovery of the entire PSU to the surface. Pressure measurements are through two pressure ports located at, or near, the fault area and one at seafloor (on the PSU) as a reference pressure measurement. Each hydraulic line has 2-way and 3-way valves on the PSU to select measurements from the seafloor or from the bore hole. The flatpack lines are secured on the outside of the tubing

with protectors and stainless steel bands Figure 35. Corkhead. during deployment in the moonpool.

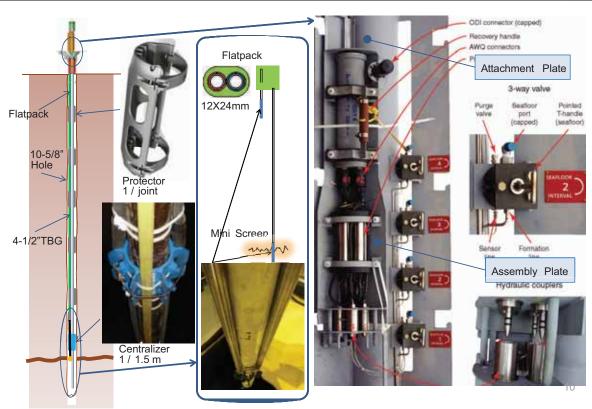
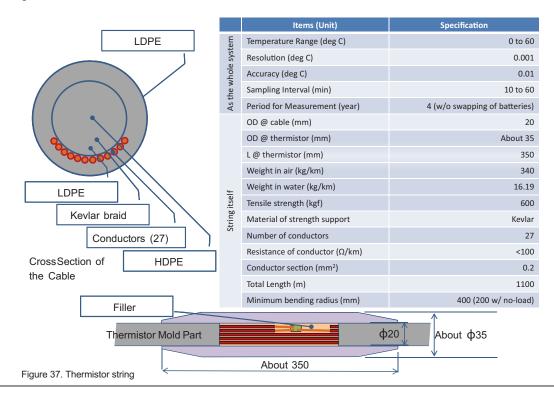



Figure 36. Pressure monitoring system.

Temperature Monitoring System (Internal Thermistor String) (Fig.37-41)

The temperature monitoring system consists of a thermistor string (comprised of 20 temperature sensors), the pressure data logger and the acoustic transponders. Data retrieval options include: physical retrieval of the logger, wet mate connector, and acoustic communication.

The thermistor string will be installed though a side entry port in the CORK head, and run down the inside of the tubing to a flexible sinker bar at the bottom.

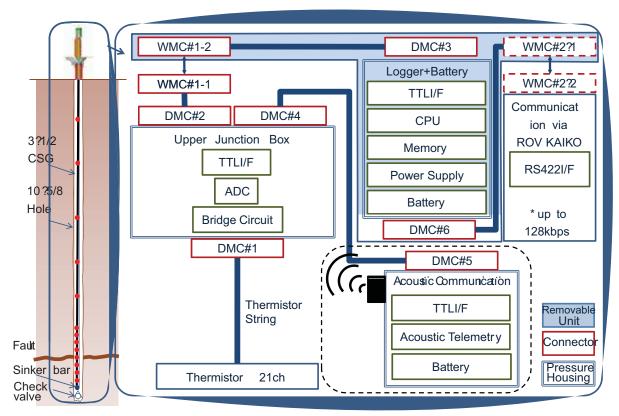


Figure 38. Block diagram for temperature measurement for 2nd well.

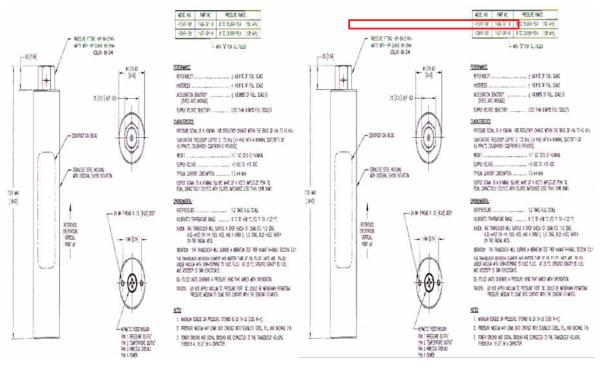


Figure 39. Acoustic transponder.

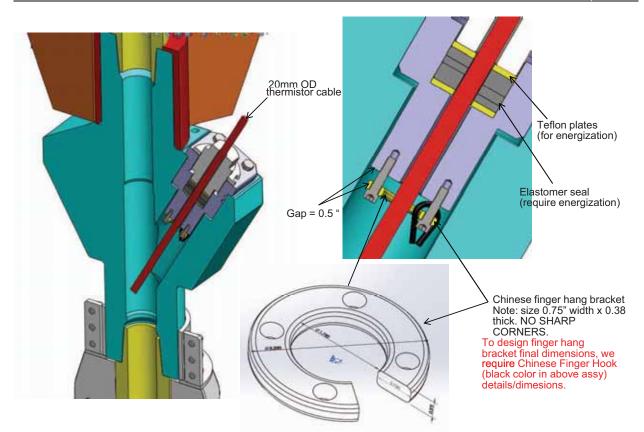


Figure 40. Side entry on corkhead.

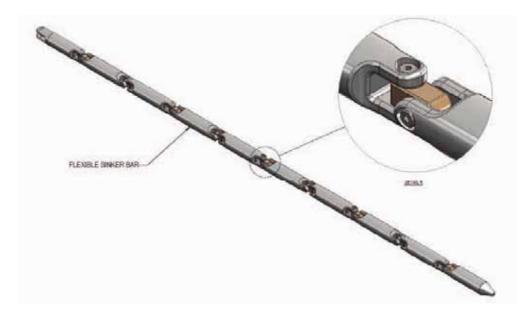


Figure 41. Flexible sinker bar.

15. WSOG JFAST Table

Well Specific Operating Guidelines (WSOG) Unit/vessel: Chikyu Location JFAST off Jpn JFAST3 (C0019) Operator: CDEX Jamst

Condition	Green	Advisory	Yellow	RED	
1.DP position footprint Unit offset deviation From start point Water depth:6909mMSL	<5 meters	5 – 15 meters	15 – 90 meters	Immediately when confirmed that situation cannot be controlled. No later than at 90 meters offset.	
2.DP heading footprint	<3°	$3^\circ - 5^\circ$	5°	If threat to position	
3.Power consumption (split switchboard configuration)	Less than 60% load of generators on line.	Have redundancy to meet the power demand in the event of a single worse case failure. And 60% intermittently or generator on line to less than 70% load of full available generator or failure any generator.	Power demand reaches 70% of all full available generator	Blackout,or loss of 1 engine room and not enough power to maintain position within Yellow watch circle	
4.Thrust consumption each Online Unit.	<60%	60% or any failure of any thruster	All available thrusters online and insufficient thrust warning activated by forecaster (CA set 13%)	Situation specific Any threat to position	
5.Position reference available	2 x DGPS XP Sky Fix 2 x DGPS HP StarFix 2 x Acoustic	Any failure or loss off performance in any system	Single system or not operating in mixed mode	If threat to position	
6.DP control system DP controllers	3 All systems Operating	Any failure or loss of performance in any system	Single system	All stations not operating	
7.Wind sensors	3	Any failure or loss of performance in any system	Single system	If threat to position	
8.Motion sensors (MRU)	2	Single system	Situation Specific	If threat to position	
9.Heading sensors (Gyro)	3	Any failure or loss of performance in any system	Single system	Loss of all gyros	
10.DP-UPS 1 and 2	2 Both systems operating ok	Any failure or loss of performance in any system	Single system	If threat to position	
11. DP-UPS 3 and 4	2 Both systems operating ok	Any failure or loss of performance in any system	Single system	If threat to position	
12. IAS System	No controllers Or network alarms	Any component fail	Single network	If threat to position	
13. Comms system	Dual systems (DP Driller)	Single system	Situation specific	Situation specific	
14. Network Hub / Signal processing units	2 both systems operating	Any failure or loss of performance in any system	Single network or any Network Hub Unit- or Signal process unit alarm in DP	Loss of both systems	
15.Riser Limitation Lower flex joint NA	<x°< td=""><td>X°- X°</td><td>X°- X°</td><td>>X°</td></x°<>	X°- X°	X°- X°	>X°	
16. Riser Twist NA	+/- xxx° from BOP Heading	Situation Specific	Situation specific	Situation specific	
17. Vessel Integrity	Vessel in intact condition	Any change in vessel condition	Situation specific	Situation specific	
18. Resulting environmental forces direction	Below +/-15° on the bow or <60% load on any online thrusters	Over +/-15 ° On the bow If total environmental force >60% load on online thrusters	Situation specific	Situation specific	
19.Wind speed (10m / 10s)	0-18 m/s	18 - 22 m/s	Situation Specific	If threat to position	
20.N-Line Tensioner vertical stroke NA	<x m<="" td=""><td>X-Xm</td><td>>Xm</td><td>Situation Specific</td></x>	X-Xm	>Xm	Situation Specific	
21.Action required	Normal status	Advise OIM, driller, Capt, Toolpusher, Company Rep, ROV	Issue alarm and Follow procedures	Issue alarm and Follow procedures	
22.Notify OIM and Company R immediately (Y/N)	N	Y	Y	Y	

Well escape route into deeper water is bearing $\underline{xxx^{o}(t)}$ - To $\underline{xxx^{o}(t)}$ (Along current to deeper seabed)

Figure 42. WSOG JFAST Table

Along with the above WSOG JFAST Table, CDEX will make final decisions on operation criteria once the drill string reaches below 4000 mBRT to prevent drill string failure due to string static load, dynamic load, bending stress, and fatigue.

16. Typhoon Evacuation

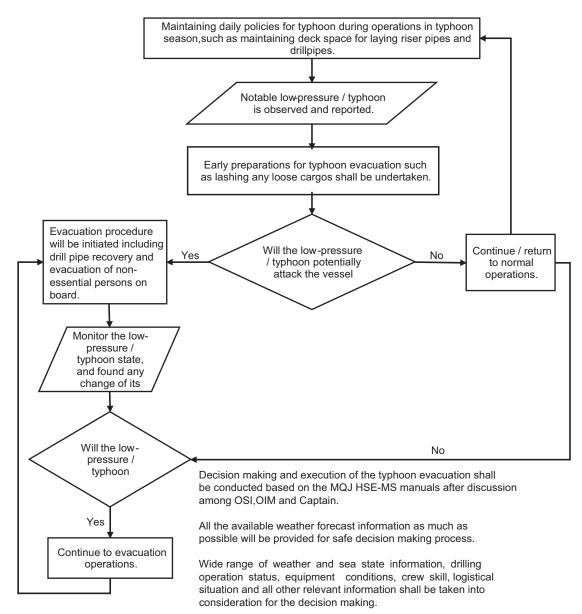


Figure 43. Typhoon and low pressure evacuation

17. Service Subcontractors

Table 16. Subcontractors Table here.

Services & Equipment	Company
A. Services	
Wellhead rental Equipment	Magnum
Mud Engineering Services	Telnite
LWD	Schlumberger
Back off Tool	Schlumberger
Non-Rotating Protector	WWT
Drilling Jar Rental	Weatherford (Dailey)
Tubing Running Services	BJ
Drilling Tools Venders	National Oil Tool, Blohm+Voss etc.
Weather Services	Weather News
Communication Services	Sigtel
Supply Boat	Offshore Operation
Patrol Boat	Undecided
Helicopter Services	Aero Asahi
Scientific Coring Services	Aumann & Associates
Thermistor String	000
Temperature Data Logger	Kaiyo-Denshi
B. Purchased Equipment	
Wellhead	Magnum
Tubing (4-1/2", 3-1/2")	Sumitomo Metal
Tubing Accessories (Shoe, Collar)	Halliburton
Mud Chemicals	Telnite
Cement Additives	Schlumberger
Core Bit, Drill Bit	BHI, Smith, TIX
Underwater TV	000
Scientific Coring Equipment	Aumann & Associates
Thermistor String	000
Temperature Data Logger	Kaiyo-Denshi
MTL	Antares, RBR
MTL Rope	Tokyo Seiko
Pressure Data Logger	ESS

*Service coordinators will be onboard to control such services during the operation.

kyu drill string
pendix 1. Chik
Table-Ap

		Internal Volume	m/l	12.54	9.59	10.40	8.89	8.52	8.52	Internal	Volume		l/m	8.85	8.74	4.93	3.46	2.72	2.65	4 03	0 7	3.46		2.72
		Displacement Volume	m/l	10.93	6.02	5.02	4.23	8.83	16.64	Displacement	Volume		l/m	25.39	14.73	40.18	30.83	19.05	8.12	A0.45	0+.0+	32.87		20.20
		Calculated Weight	kg/m	85.36	51.21	42.74	36.31	70.24	133.91	Calculated	Weight		kg/m	199.12	115.48	315.20	241.68	149.41	63.69	06 808	07.000	250.46		154.03
	Length	Range & Ave. (m)		II (9.55m)	II (9.55m)	II (9.47m)	II (9.43m)	II (9.44m)	II, 9.4m+Pup	Range &	Ave. (m)			ll (9.31m)	ll (9.30m)	II (9.31m)	ll (9.31m)	ll (9.31m)	ll (9.31m)	(m (2 3) II	(11120.6) 11	II (9.32m)		ll (9.31m)
		Tensile Capacity	ton	781 (Body)	541 (Body)	421 (Body)	335 (Body)	541 (Pin)	901 (Pin)	Tensile	Capacity		m.ton	989(Pin)	522(Pin)	1435(Pin)	1062(Pin)	637(Pin)	276(Box)	1105/Din)		885(Pin)		584(Pin)
		T.J. Torsional Yield Strength	kN-m	146.98	112.79	85.52	85.52	75.78	141.55	Torsional	Yield	Strength	kN-m	153.18(Pin)	69.54(Pin)	233.80(Pin)	153.13(Pin)	74.76(Pin)	25.98(Box)	10/ 83	00:40	127.61		68.53
		Make up Torque (min)	kN-m	73.49	67.63	51.37	51.37	52.99	84.94	Make up	Torque		kN-m	91.91	41.73	140.28	91.88	44.86	15.60	116 90	0.00	76.56		41.12
	TION	Type				NKKT-DSTJ		NKKT-DSTJ	6-5/8" FH		CONNECTION		Type	6-5/8 FH Mod.	5-1/2 FH Mod.	7-5/8 REG	6-5/8 REG	4 IF	3-1/2 IF	7-5/8 REG	000	6-5/8 REG		4 IF
	CONNECTION			6-5/8FH	5-3/4 FH	5-1/2 FH	5-1/2 FH	5-3/4 FH	9	:: U	diie	recessed		recessed	recessed	recessed	recessed	recessed	recessed	N/A	(Slip grooved)	N/A	(unip grouved)	N/A (Slip grooved)
		Q	. <u>E</u>	4.25	4-1/8"	4-1/8"	4-1/8"	4-1/8"	4-1/8"	Floritor	Elevator	recessed		recessed	recessed	N/A	recessed	recessed	recessed	V/N		N/A		N/A
		8	.=	8.5	7-1/2"	7"	1	7"	8-1/2"	Calicol	apiide	grooved		grooved	grooved	straight	grooved	grooved	grooved	ctraicht	audilit	straight		straight
	Pipe Body	₽	. <u>e</u>	5.125	4.488"	4.670"	4.276"	4-1/8"	4-1/8"	!	⊇		.Ľ		4-1/8"		2-1/2"	2-1/4"	2-1/4"			2-1/2"		2-1/4"
	Pip	8	.=	6.625	5-1/2"	5-1/2"	ζ	5.68"	6-5/8"	;	3		'n	8-1/2"	ř.	9-1/2"	8-1/2"	6-3/4"	4-3/4"	a_1//2"	21-0	8-1/2"		6-3/4"
		yield strength	ksi	140	150	140	140	120	120					100	100	100	100	110	110	0	3	100		110
		Grade		Z140	S150	S140	S140	4145H (M)	ERS425					4145H (M)	4145H (M)	4145H (M)	4145H (M)	4145H (M)	4145H (M)	DNM110		DNM110		DNM110
,		Upset Style		ΕŪ	EU	ΕŪ	EUE																	
			Nom. Wt.	47.06		24.7 lb/ft	19.5 lb/ft	for BHA	for KNOBBY						for Coring		for Drilling					for Drilling		
:			Nom. Nom. Size Wall	×	5-1/2" x 0.506"	5-1/2" x 0.415"	5" × 0.362"	Lower HWDP	Upper HWDP						7"									

Appendix 1. Chikyu Drilling

Т

CDEX, JAMSTEC

Appendix 2. Specification and Capability of Chikyu

Table-Appendix 2. Specification and capability of Chikyu。

	GENERAL		MAJOR DRILLING EQUIPMENT
Rig Type	Drill Ship	Derrick	Bailey Dual well Derrick
Design	JAMSTEC / Mitsubishi Heavy Industry /		21.95 m(L) X 18.3 m(W) x 70.1m(H)
	Mitsui Engineering and Shipbuilding	Drawworks	National Oilwell Model EH-V-5000, DC Drive
Built Year	2005		Hoisting capacity 1,250MT
Builder	Mitsubishi Heavy Industry /	Motion Compensator	HYDRALIFT Crown Mounted Type
Balldor	Mitsui Engineering and Shipbuilding		Max Compensating Load : 518MT
Classification	NK (NS*(Mobile Offshore Drilling Unit		Max Static Load : 1.250MT
Classification	MNS*(M0), DPS B)		Stroke : 25 ft (7.62 m)
Otation Kaoning	Dynamically Positioned	Tan Drive Sustem	HYDRALIFT Model HPS 1000 2E AC, 1,000ST
Station Keeping Accommodation		Top Drive System Rotary Table	HTDRALIFT MODEL HPS 1000 2E AC, 1,000S1
	200 persons		
Helideck	EH 101 Capable	: Main Hole	Varco BJ Model RST 60-1/2, 1,250MT
Max Drill Depth	10,000m	: Aux. Hole	Varco BJ False Rotary 49-1/2, 680MT
Min/Max Water Depth	*500m/2500m * Depend on Metocean Condition	Dual Elevetor	Blohm+Voss Hydraulic Operated,
(Riser Operation)			/stemLoad Capacity : 750 ST, Pipe Range : 2-3/8" - 9-7/8"
Operating Conditions	Wind 23m/s, Wave 4.5m significant	Pipe Handling System	2 X HYDRALIFT, Model : Hydra Racker IV
for Drilling	Current 1.5Knot		Vertical Pipe racker for fourble (Quadruple) stand
		Mud Pumps	3 X National Oilwell 14-P-220, 7500psi, 2260hp
	PRINCIPAL DIMENSIONS	Solid Control	Gumbo Separator : 2 x Brandt Single Gumbo Scalper
_ength overall	210.0 m		Shale Shaker : 6 x Brandt Double VSM 300
Breadth	38.0 m		Desander : 2 x Swaco, Model 3-12 D-SANDER
Depth	16.2 m		Mud Cleaner : 2 x Swaco, Model 8T4 D-SILTER
Draft (max)	9.2 m		with Adjustable Linear Shaker
Gross Tonnage	56,752 MT		Cenrifuge : 3 x Brandt, Model RT HeviJet 362
Variable load (Operating)	23,500 MT		Degasser : 2 x Burgess Magna-Vac Model 1500
Variable load (Transit)	23,500 MT		
anabio load (Transiq			BOP/RISER
	STORAGE CAPACITY	LMRP	18-3/4" 10,000 psi, Shaffer Dual Spherical BOP
Bulk cement	467 m3 (4 x 4,125 ft3)	BOP	18-3/4" 15.000 psi, Cameron Model 15TL Double
Juik Cement	58 m3 (2 x 1,030 ft3)	bor	18-3/4" 15,000 psi, Cameron Model 15TL Dobble
Dulli Mud		Diverter	
Bulk Mud	701 m3 (6 x 4,125 ft3)	Diverter	ABB Vetco Gray, Model KFDS/CSO
<u> </u>	57 m3 (2 x 1,000 ft3)		60-1/2" suport housing, Working Press. 500 psi,
Sack Storage Active Mud Pit	500 m ²	BOP Control System Marine Riser	ABB Offshore Systems Inc., MUX Control System
	6 x 85m ³ (510 m ³)	Marine Riser	Cameron Load Share Type, 21.75" & 21.375"OD x 90ft jt
Reserve Mud Pit	8 x 212.5m ³ (1,700 m ³)		Connector Type LoadKing 4.0(Load Rating 1,814MT)
Fuel	9,300 m ³		Choke/Kill : 4.25"ID, 15,000 psi, Booster : 4"ID, 7,500 psi
Helifuel	3 X 2,500 lit.	Telescopic Joint	65 ft (19.8m) stroke, Load Rating 1,814MT
Potable water	740 m ³		Working Press. : 500 psi
Drill water	2,550 m ³	Riser Tensioners	HYDRALIFT, Direct Cylinder Tensioner N-line System
Pipe Storage	1,020 m ²		6 cylinders, 52' stroke, 363 ton /ea. capacity
Riser Storage	780 m ²	Riser Management	Fugro/MCS, On-Line Riser Analysis System
		System (RMS)	
	MACHINERY	Choke Manifold	Cameron, 3-1/16" 15,000psi / 4-1/16" 5,000psi
Main Engines	Mitsui 12ADD30V, 6 x 5,270kw		2 X Hydraulic remote choke, 2 X Manual choke
Main Generator	Nishishiba, 6 x 5000kw		
Auxiliary Engines	Mitsui 6ADD30V, 2 x 2,640kw		PURPOSE-BUILT TUBULAR
Auxiliary Generator	Nishishiba, 2 x 2500kw	Drill Pipe	5.5"DP X 0.506" S-150, 5-3/4"FH NK DSTJ 3,250m
Emergency Engines	MHI S12A2-MPTA, 1 x 600kw		5.5"DP X 0.415" S-140, 5-1/2"FH NK DSTJ 1,500m
Emergency Generator	Nishishiba, 560kw		5.0"DP X 0.362" S-140, 5-1/2"FH NK DSTJ 5,000m
DVN	AMIC POSITIONING SYSTEM		OTHERS
Wodel	Mitsui Engineering and Shipbuilding	Deck Crane	Hydralift, Electric-Hydraulic Knuckle Boom Crane
	Triple Redundancy DPS		2 x 85MT, 2 x 45MT
	Class B	Laboratorica	
Class		Laboratories	2,300m2
Position Reference System	2 x DGPS (Skyfix XP)		Various types of laboratories which are Microbiology,
	2 x DGPS(Starfix HP)		Paleomagnetics, Geochemistry, Paleontology/Petrology,
	2 x Acoustic Position Reference System		Geochemistry on board
	(LBL + USBL)	Sewage Treatment Plant	Sasakura Engeering, Super Trident ST-15
		Drill Cuttings/Waste Mud	Sasakura/Telnite/Apollo, IHI MU
	ROPULSION/THRUSTERS	Treatment Unit	1) Mud Drain Concentration System
P			0) O and a set Matter Durif in a Oracle and
	2 x Non-Retractable 4,200kw		2) Condesed Water Purifying System
	2 x Non-Retractable 4,200kw 4 x Retractable 4,200kw		
P Azimuth Thrusters Side Thruster			2) Condesed Water Purrying System 3) Solidify & Dehydration System

Appendix 3. Improved Underwater TV System

The Underwater TV (UWTV) system has been improved for IODP Expedition 343, primarily for:

- · Improvement of camera vision quality
- Improvement of operational performance
- Prevention from entanglement on the CORK head

Improvement of camera vision quality

The installation of a new camera on the UWTV frame and improvement of a dimming control system have been completed.

The setting position of the camera in both top and bottom of the frame is selectable. Moreover level of the camera angle is adjustable to a certain extent before descent. The greater portion of the top and bottom edge of the guide sleeve is within the camera frame of view. (Fig.1-Appendix 3)

The improved dimming control system allows for tuning of dimming levels in stepwise increments (8 stages). (Fig.2-Appendix 3, "Lightning control") This control is now available in both the Driller's house and in the Moon pool area via a new control box described below.

Improvement of the operation performance

A new control box and monitor have been installed in the Driller's house to improve UWTV operation performance. (Fig.3-Appendix 3)

The driller can control various UWTV functions via a new control box in the Driller's house and also in Moon pool area. The control box is portable, and can be carried to the Moon pool if needed. The control box can be connected to the UDTV reel via connection port on the UWTV reel. Control functions include: an on/off switch and level controls for Light, sonar and responder, and also to control the winding speed of the UWTV winch.

Prevention from entanglement on the CORK head

During IODP Expedition 343 operations, the UWTV will pass down around the Drill pipe and the outside of the large diameter CORK head. To avoid any hangups on the CORK unit, the UWTV guide sleeve of has been redesigned.

- Rounding off corners as shown in two spheres in figure. (Fig.4-Appendix 3)
- Expanded the diameter to 34 inches. (Fig.4-Appendix 3)
- Installed bungee cords to maintain flexibility between the guide sleeve and the frame. (Refer to Fig.5)

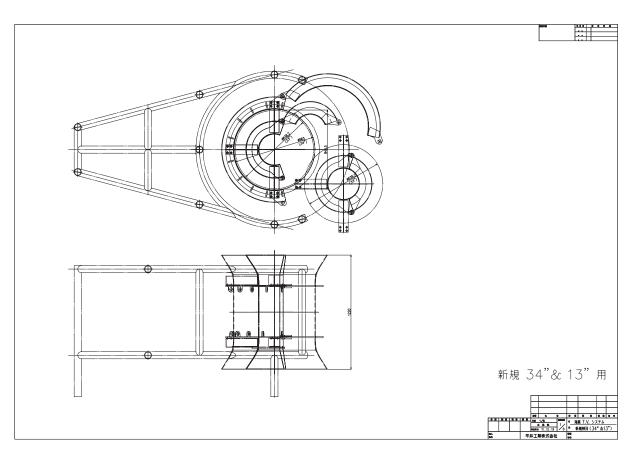


Figure 1-Appendix3.

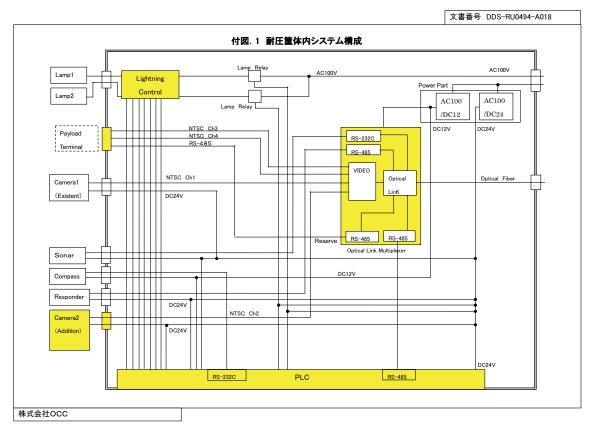


Figure 2-Appendix3.

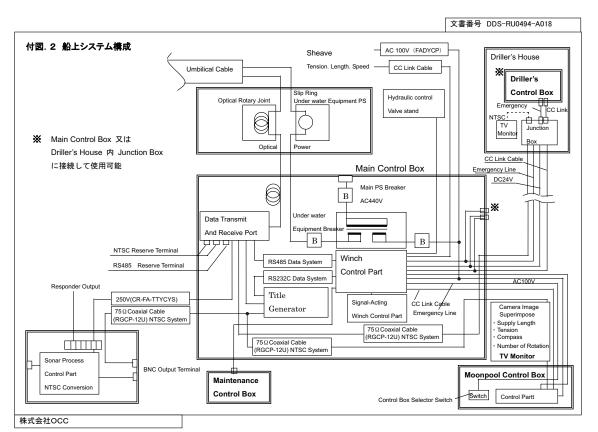


Figure 3-Appendix3.

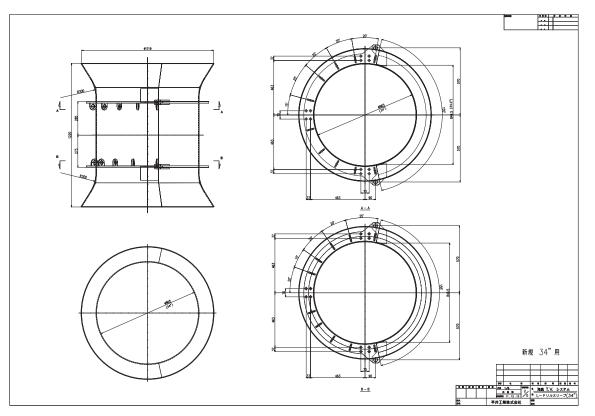


Figure 4-Appendix3.

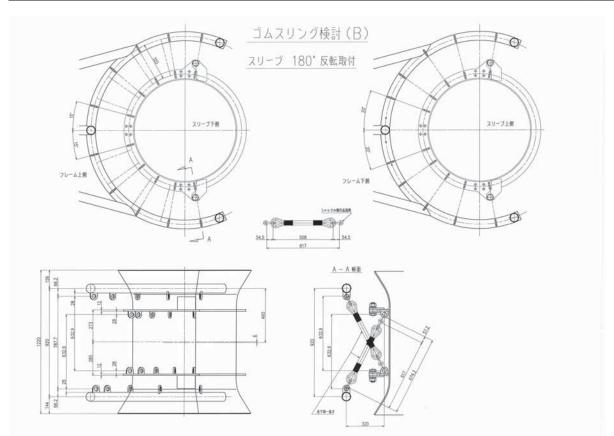


Figure 5-Appendix3.

Appendix 4. Meta-ocean Data

Table1-Appendix 4. Visibility

- 2010
2006
Airport,
Sendai
bservation,
0
(Weathernews
Table
Visibility
Aonthly

	Jan	Feb	Mar	Apr	May	nn	Aug	Sep	Oct	Νον	Dec
AII	3440	3006	3394	3523	3485	3680	3712	3600	3531	3746	3986
Over 10 km	3256	2699	3069	2755	2569	2635	2891	3148	3203	3494	3702
Visibility	94.9	89.8	90.4	82.0	72.9	75.6	6.77	87.9	90.7	93.3	92.9
Low Visibility	30	107	64	114	226	21.5	118	50	37	19	57
(under 3000 m)	0.9	3.6	1.9	3.4	6.4	6.2	3.2	1.4	1.0	0.5	1.4
Low Visibility	2	21	ω	24	64	51	22	12	6	5	10
(under 1000 m)	0.1	0.7	0.2	0.7	1.8	1.5	0.6	0.3	0.3	0.1	0.3

Wave Height Exceedance (Weathernews)

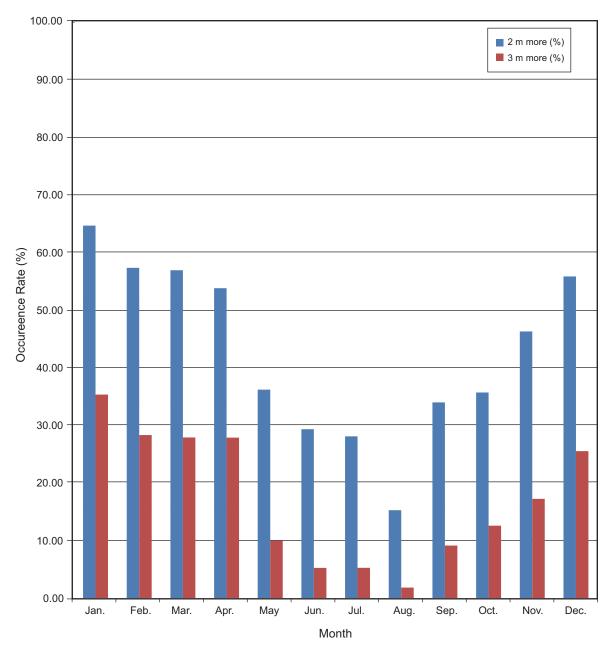
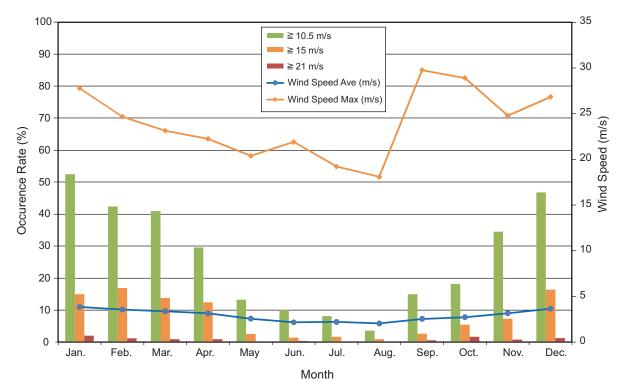
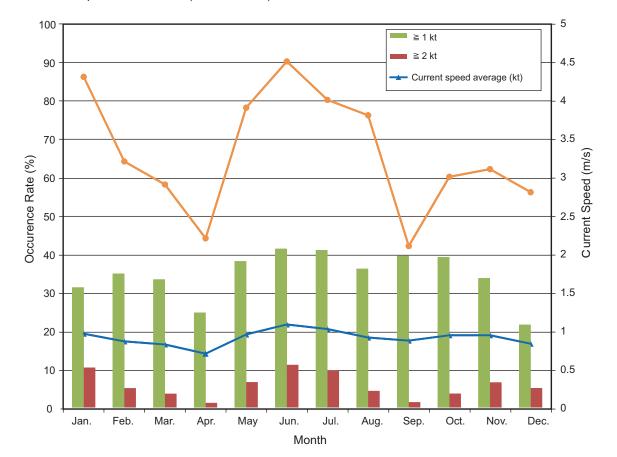
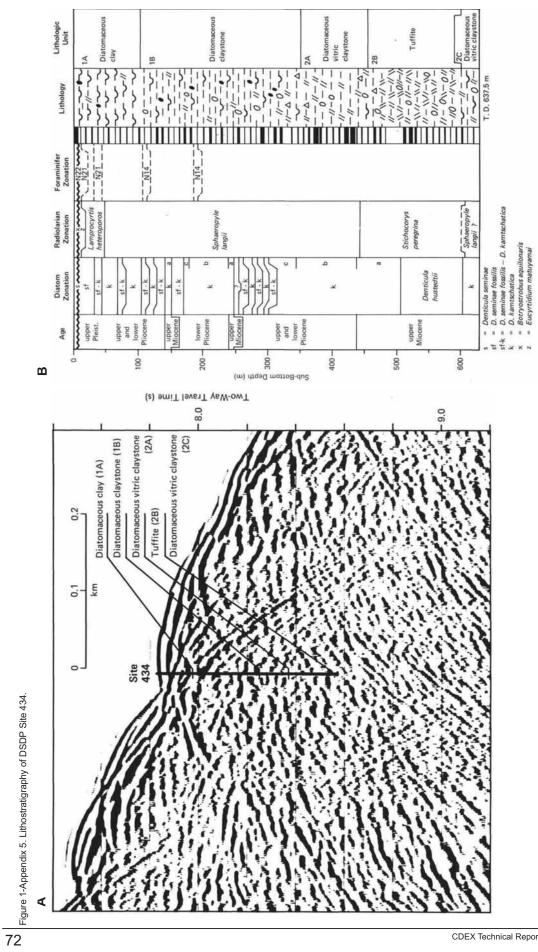


Figure1- Appendix 4. Wind Speed

Wind Speed Records & Its Exceedance (WeathernNews)




Figure 2-Appendix 4. Tropical Cyclones Left April Right May



Tropical Depression
 Tropical Storm
 Severe Tropical Storm
 Typhoon
 Extratropical low

Figure 3-Appendix 4. Current

Sea Current Speed Exceedance (Weathernews)

Appendix 5. Offset well data

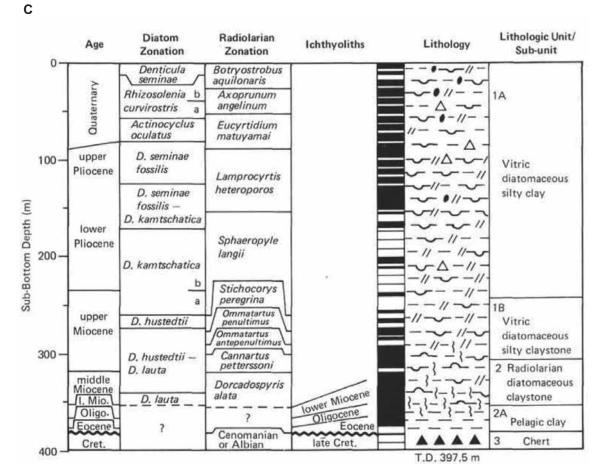


Figure 2-Appendix 5. Lithostratigraphy of DSDP Site 436.

Appendix 6. Helicopter Spec

RRD Helicopter Specifications

Table 1-Appendix 6. RRD Helicopter Specification

ITEM	CONTRACT SHIP	SUBSTITUTE SHIP	SUBSTITUTE SHIP
Manufactured Company	S.N.I.Aerospatial	Bell Helicopter Textron	Bell Helicopter Textron
Type of Helicopter	AS332L	Bell412EP	Bell412SP
Registration No.	2089	36496	33109
Place of Registration	Japan	Japan	Japan
Call Sign	9690	6928	9616
Length	18.70m	17.13m	17.13m
Height	4.94m	4.60m	4.60m
Rotor Diameter	15.60m	14.2m	14.2m
Gross Weight	8,600kg	5,398kg	5,398kg
Self Weight	4,380kg	3,124kg	3,084kg
Loading Weight	4,220kg	2,274kg	2,314kg
Crew	2	2	2
Passenger Seats	18	11	11
Cabin Capacity	13.43m ³	6.23m ³	6.23m ³
Cargo Capacity	Cabin	0.79m ³	0.79m ³
Fuel Capacity	2,059ℓ	1,249ℓ	1,249ℓ
Engine	TURBOMECHA-1A× 2	P&WPT6-3D×2	P&WPT6T-3BE×2
Engine Power	Max1636shp×2	Max900shp×2	Max900shp×2
Max Speed	275km 🗡 h	259km 🖊 h	259km 🗡 h
Cruising Speed	240km 🗡 h	230km 🗡 h	230km 🗡 h
Max Altitude	5,100m	5,025m	5,025m
Endurance	3.00h	3.70h	3.70h
Cruising Range	580km	470km	470km
Fuel Consumption	686L 🗡 h	337L 🗡 h	337L 🖊 h
Year Manufactured	1984	2008	1986
Place of Manufactured	FRANCE	U.S.A	U.S.A
Total Airframe Flying Hour	12,891h49m	243h58m	5,875h21m
No1Engine Total Hours	6,931h00m	243h58m	5,875h21m
No2 Engine Total Hours	1,647h22m	243h58m	964h29m
Certificate of Airworthiness	February,24,2012	December,14,2012	June,6,2012

Helicopter Landing Limitations

Table 2-Appendix 6. Helicopter Landing Limitation

			Day Time	Night Time			
Weather	Max. Wi	nd Speed including Gust	45knots(23	.15m/sec)			
weather		Min. Visibility	5,000m	5,000m			
	N	lin. Height of cloud	1,000ft (300m)	1,000ft (300m)			
		Max. Pitch/Roll	+/- Pitch 2deg,	+/- Pitch 1deg,			
Movements			Roll 5deg	Roll 3deg			
		Max. Heave rate	N/A	N/A			
AS	Significant shi	ift in relative wave N/A					
Other rest	riction	*No take off or landing with a tailwind.					
Other resi	inction	*No flight when 2VHF AM air-bands are inoperative.					

Helicopter Shutdown on Unstable Helideck

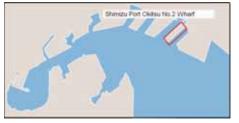
Table 3-Appendix 6. Helicopter Shutdown on Unstable Helideck

A/C	Max. Wind Speed Including Guest	Max Pitch/Roll	Max. Heave Rate
AS332L	30knot	+/- Pitch 1deg, Roll 3deg	N/A
Bell412EP	20knot	+/- Pitch1deg, Roll 3deg	N/A
Bell412SP	20knot	+/- Pitch 1deg, Roll 3deg	N/A

Appendix 7. Supply Boat Specifications

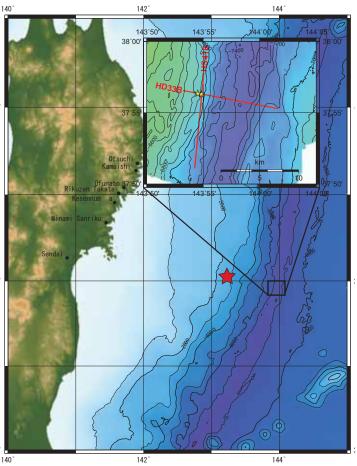
Table 1-Appendix 7. Supply Boat Spec.

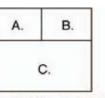
RRD		KAIKO	KAIYU
	Classification	NK	NK
Ø	Ice Class		
Class	Nevinetien Limit	Major Coastal,	Major Constal International (A2)
0	Navigation Limit	International(A3)	Major Coastal, International (A3)
	Built Year	1991 October	2005 March
	Length	65.90m	62.40m
E	Breadth Moulded	14.50m	14.00m
Dimension	Depth Moulded	7.13m	6.00m
	Draught	5.85m	5.00m
	Gross Tonnage	1,460t	1,292t
	Dead weight		
	Fuel Oil	761.05m ³	957.38m ³
	Fresh Water	424.92m ³	409.11m ³
>	Drill Water	588.17m ³	431.12m ³
acit	Deck Cargo	800ton	312t
Capacity	Deck Space	385.2m ²	310.5m ²
0	Bulk Tank	229.20m ³	140m ³
	Crew	15	15
	Passenger	21	25


Appendix 8. IODP Expedition 343 "JFAST" Logistics Map

40

38


36°


A Shimizu Port

Before Expedition 343, Chikyu will be stand-by and loading material and equipment alongside the Shimizu Port. And after the expedition finish, Chikyu will be back to the Shimizu Port.

B Tohoku Region and epicenter of Tohoku earthquake along with the servey lines and the proposed drilled sites (modified from Exp.343 Scientific Prospectus).

Figure1-Appendix 8. Logistics map.

A. Anthony Robert Telton, MCU, MS; B. Unicouri, MCU, MS; C. Yukari Kido, COEX, JAMSTEC

CDEX TECHNICAL REPORT Volume 16 Drilling Completion Report Japan Trench Fast Earthwuake Drilling Project (JFAST) Expedition 343

JAMSTEC Headquarters 2-15 Natsushima-cho, Yokosuka Kanagawa 237-0061 JAPAN Phone: +81-46-866-3811 Fax: +81-46-867-9025 http://www.jamstec.go.jp

CDEX

3175-25 Showa-machi, Kanazawa-ku, Yokohama Kanagawa 237-0061 JAPAN Phone: +81- 45-778-5643 Fax: +81-45-778-5948 Email: cdex@jamstec.go.jp http://www.jamstec.go.jp/chikyu